49 research outputs found
Novel carbohydrate binding modules in the surface anchored α‐amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141499/1/mmi13881.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141499/2/mmi13881_am.pd
Recognition of O6-benzyl-2′-deoxyguanosine by a perimidinone-derived synthetic nucleoside: a DNA interstrand stacking interaction
The 2′-deoxynucleoside containing the synthetic base 1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)-tetrahydrofuran-2-yl)-1H-perimidin-2(3H)-one] (dPer) recognizes in DNA the O6-benzyl-2′-deoxyguanosine nucleoside (O6-Bn-dG), formed by exposure to N-benzylmethylnitrosamine. Herein, we show how dPer distinguishes between O6-Bn-dG and dG in DNA. The structure of the modified Dickerson-Drew dodecamer (DDD) in which guanine at position G4 has been replaced by O6-Bn-dG and cytosine C9 has been replaced with dPer to form the modified O6-Bn-dG:dPer (DDD-XY) duplex [5′-d(C1G2C3X4A5A6T7T8Y9G10C11G12)-3′]2 (X = O6-Bn-dG, Y = dPer) reveals that dPer intercalates into the duplex and adopts the syn conformation about the glycosyl bond. This provides a binding pocket that allows the benzyl group of O6-Bn-dG to intercalate between Per and thymine of the 3′-neighbor A:T base pair. Nuclear magnetic resonance data suggest that a similar intercalative recognition mechanism applies in this sequence in solution. However, in solution, the benzyl ring of O6-Bn-dG undergoes rotation on the nuclear magnetic resonance time scale. In contrast, the structure of the modified DDD in which cytosine at position C9 is replaced with dPer to form the dG:dPer (DDD-GY) [5′-d(C1G2C3G4A5A6T7T8Y9G10C11G12)-3′]2 duplex (Y = dPer) reveals that dPer adopts the anti conformation about the glycosyl bond and forms a less stable wobble pairing interaction with guanin
Recommended from our members
Crystal structures of the transpeptidase domain of the Mycobacterium tuberculosis penicillin‐binding protein PonA1 reveal potential mechanisms of antibiotic resistance
Mycobacterium tuberculosis is a human respiratory pathogen that causes the deadly disease tuberculosis. The rapid global spread of antibiotic‐resistant M. tuberculosis makes tuberculosis infections difficult to treat. To overcome this problem new effective antimicrobial strategies are urgently needed. One promising target for new therapeutic approaches is PonA1, a class A penicillin‐binding protein, which is required for maintaining physiological cell wall synthesis and cell shape during growth in mycobacteria. Here, crystal structures of the transpeptidase domain, the enzymatic domain responsible for penicillin binding, of PonA1 from M. tuberculosis in the inhibitor‐free form and in complex with penicillin V are reported. We used site‐directed mutagenesis, antibiotic profiling experiments, and fluorescence thermal shift assays to measure PonA1's sensitivity to different classes of β‐lactams. Structural comparison of the PonA1 apo‐form and the antibiotic‐bound form shows that binding of penicillin V induces conformational changes in the position of the loop β4′‐α3 surrounding the penicillin‐binding site. We have also found that binding of different antibiotics including penicillin V positively impacts protein stability, while other tested β‐lactams such as clavulanate or meropenem resulted in destabilization of PonA1. Our antibiotic profiling experiments indicate that the transpeptidase activity of PonA1 in both M. tuberculosis and M. smegmatis mediates tolerance to specific cell wall‐targeting antibiotics, particularly to penicillin V and meropenem. Because M. tuberculosis is an important human pathogen, these structural data provide a template to design novel transpeptidase inhibitors to treat tuberculosis infections. Database Structural data are available in the PDB database under the accession numbers 5CRF and 5CXW
Concerning P450 Evolution: Structural Analyses Support Bacterial Origin of Sterol 14α-Demethylases
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lamb, D. C., Hargrove, T. Y., Zhao, B., Wawrzak, Z., Goldstone, J. V., Nes, W. D., Kelly, S. L., Waterman, M. R., Stegeman, J. J., & Lepesheva, G. I. Concerning P450 evolution: structural analyses support bacterial origin of sterol 14α-demethylases. Molecular Biology and Evolution, (2020): msaa260, doi:10.1093/molbev/msaa260.Sterol biosynthesis, primarily associated with eukaryotic kingdoms of life, occurs as an abbreviated pathway in the bacterium Methylococcus capsulatus. Sterol 14α-demethylation is an essential step in this pathway and is catalyzed by cytochrome P450 51 (CYP51). In M. capsulatus, the enzyme consists of the P450 domain naturally fused to a ferredoxin domain at the C-terminus (CYP51fx). The structure of M. capsulatus CYP51fx was solved to 2.7 Å resolution and is the first structure of a bacterial sterol biosynthetic enzyme. The structure contained one P450 molecule per asymmetric unit with no electron density seen for ferredoxin. We connect this with the requirement of P450 substrate binding in order to activate productive ferredoxin binding. Further, the structure of the P450 domain with bound detergent (which replaced the substrate upon crystallization) was solved to 2.4 Å resolution. Comparison of these two structures to the CYP51s from human, fungi, and protozoa reveals strict conservation of the overall protein architecture. However, the structure of an “orphan” P450 from nonsterol-producing Mycobacterium tuberculosis that also has CYP51 activity reveals marked differences, suggesting that loss of function in vivo might have led to alterations in the structural constraints. Our results are consistent with the idea that eukaryotic and bacterial CYP51s evolved from a common cenancestor and that early eukaryotes may have recruited CYP51 from a bacterial source. The idea is supported by bioinformatic analysis, revealing the presence of CYP51 genes in >1,000 bacteria from nine different phyla, >50 of them being natural CYP51fx fusion proteins.The study was supported by National Institutes of Health (Grant No. R01 GM067871 to G.I.L.) and by a UK-USA Fulbright Scholarship and the Royal Society (to D.C.L.)
Structural complex of sterol 14α-demethylase (CYP51) with 14α-methylenecyclopropyl-Δ7-24, 25-dihydrolanosterol
QC 20130809</p