32 research outputs found

    Exploring synergetic effects of dimensionality reduction and resampling tools on hyperspectral imagery data classification

    Get PDF
    The present paper addresses the problem of the classification of hyperspectral images with multiple imbalanced classes and very high dimensionality. Class imbalance is handled by resampling the data set, whereas PCA and a supervised filter are applied to reduce the number of spectral bands. This is a preliminary study that pursues to investigate the benefits of combining several techniques to tackle the imbalance and the high dimensionality problems, and also to evaluate the order of application that leads to the best classification performance. Experimental results demonstrate the significance of using together these two preprocessing tools to improve the performance of hyperspectral imagery classification. Although it seems that the most effective order corresponds to first a resampling strategy and then a feature (or extraction) selection algorithm, this is a question that still needs a much more thorough investigation in the futureThis work has partially been supported by the Spanish Ministry of Education and Science under grants CSD2007–00018, AYA2008–05965–0596 and TIN2009–14205, the Fundació Caixa Castelló–Bancaixa under grant P1–1B2009–04, and the Generalitat Valenciana under grant PROMETEO/2010/02

    Single-cell sequencing reveals Hippo signaling as a driver of fibrosis in hidradenitis suppurativa

    Get PDF
    Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by abscesses, nodules, dissecting/draining tunnels, and extensive fibrosis. Here, we integrate single-cell RNA sequencing, spatial transcriptomics, and immunostaining to provide an unprecedented view of the pathogenesis of chronic HS, characterizing the main cellular players and defining their interactions. We found a striking layering of the chronic HS infiltrate and identified the contribution of 2 fibroblast subtypes (SFRP4+ and CXCL13+) in orchestrating this compartmentalized immune response. We further demonstrated the central role of the Hippo pathway in promoting extensive fibrosis in HS and provided preclinical evidence that the profibrotic fibroblast response in HS can be modulated through inhibition of this pathway. These data provide insights into key aspects of HS pathogenesis with broad therapeutic implications.</p

    Double triage to identify poorly annotated genes in maize: The missing link in community curation

    Get PDF
    The sophistication of gene prediction algorithms and the abundance of RNA-based evidence for the maize genome may suggest that manual curation of gene models is no longer necessary. However, quality metrics generated by the MAKER-P gene annotation pipeline identified 17,225 of 130,330 (13%) protein-coding transcripts in the B73 Reference Genome V4 gene set with models of low concordance to available biological evidence. Working with eight graduate students, we used the Apollo annotation editor to curate 86 transcript models flagged by quality metrics and a complimentary method using the Gramene gene tree visualizer. All of the triaged models had significant errors-including missing or extra exons, non-canonical splice sites, and incorrect UTRs. A correct transcript model existed for about 60% of genes (or transcripts) flagged by quality metrics; we attribute this to the convention of elevating the transcript with the longest coding sequence (CDS) to the canonical, or first, position. The remaining 40% of flagged genes resulted in novel annotations and represent a manual curation space of about 10% of the maize genome (~4,000 protein-coding genes). MAKER-P metrics have a specificity of 100%, and a sensitivity of 85%; the gene tree visualizer has a specificity of 100%. Together with the Apollo graphical editor, our double triage provides an infrastructure to support the community curation of eukaryotic genomes by scientists, students, and potentially even citizen scientists. © 2019 This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication

    An insight into imbalanced Big Data classification: outcomes and challenges

    Get PDF
    Big Data applications are emerging during the last years, and researchers from many disciplines are aware of the high advantages related to the knowledge extraction from this type of problem. However, traditional learning approaches cannot be directly applied due to scalability issues. To overcome this issue, the MapReduce framework has arisen as a “de facto” solution. Basically, it carries out a “divide-and-conquer” distributed procedure in a fault-tolerant way to adapt for commodity hardware. Being still a recent discipline, few research has been conducted on imbalanced classification for Big Data. The reasons behind this are mainly the difficulties in adapting standard techniques to the MapReduce programming style. Additionally, inner problems of imbalanced data, namely lack of data and small disjuncts, are accentuated during the data partitioning to fit the MapReduce programming style. This paper is designed under three main pillars. First, to present the first outcomes for imbalanced classification in Big Data problems, introducing the current research state of this area. Second, to analyze the behavior of standard pre-processing techniques in this particular framework. Finally, taking into account the experimental results obtained throughout this work, we will carry out a discussion on the challenges and future directions for the topic.This work has been partially supported by the Spanish Ministry of Science and Technology under Projects TIN2014-57251-P and TIN2015-68454-R, the Andalusian Research Plan P11-TIC-7765, the Foundation BBVA Project 75/2016 BigDaPTOOLS, and the National Science Foundation (NSF) Grant IIS-1447795

    Contribution of plasma cells and B cells to hidradenitis suppurativa pathogenesis

    Get PDF
    Hidradenitis suppurativa (HS) is a debilitating chronic inflammatory skin disease characterized by chronic abscess formation and development of multiple draining sinus tracts in the groin, axillae, and perineum. Using proteomic and transcriptomic approaches, we characterized the inflammatory responses in HS in depth, revealing immune responses centered on IFN-γ, IL-36, and TNF, with lesser contribution from IL-17A. We further identified B cells and plasma cells, with associated increases in immunoglobulin production and complement activation, as pivotal players in HS pathogenesis, with Bruton’s tyrosine kinase (BTK) and spleen tyrosine kinase (SYK) pathway activation as a central signal transduction network in HS. These data provide preclinical evidence to accelerate the path toward clinical trials targeting BTK and SYK signaling in moderate-to-severe HS

    Associations between COVID-19 and skin conditions identified through epidemiology and genomic studies

    No full text
    Background: Coronavirus disease 2019 (COVID-19) is commonly associated with skin manifestations, and may also exacerbate existing skin diseases, yet the relationship between COVID-19 and skin diseases remains unclear. Objective: By investigating this relationship through a multiomics approach, we sought to ascertain whether patients with skin conditions are more susceptible to COVID-19. Methods: We conducted an epidemiological study and then compared gene expression across 9 different inflammatory skin conditions and severe acute respiratory syndrome coronavirus 2–infected bronchial epithelial cell lines, and then performed a genome-wide association study transdisease meta-analysis between COVID-19 susceptibility and 2 skin diseases (psoriasis and atopic dermatitis). Results: Skin conditions, including psoriasis and atopic dermatitis, increase the risk of COVID-19 (odds ratio, 1.55; P = 1.4 × 10−9) but decrease the risk of mechanical ventilation (odds ratio, 0.22; P = 8.5 × 10−5). We observed significant overlap in gene expression between the infected normal bronchial epithelial cells and inflammatory skin diseases, such as psoriasis and atopic dermatitis. For genes that are commonly induced in both the severe acute respiratory syndrome coronavirus 2 infection and skin diseases, there are 4 S100 family members located in the epidermal differentiation complex, and we also identified the “IL-17 signaling pathway” (P = 4.9 × 10−77) as one of the most significantly enriched pathways. Furthermore, a shared genome-wide significant locus in the epidermal differentiation complex was identified between psoriasis and severe acute respiratory syndrome coronavirus 2 infection, with the lead marker being a significant expression quantitative trait locus for S100A12 (P = 3.3 × 10−7). Conclusions: Together our findings suggest association between inflammatory skin conditions and higher risk of COVID-19, but with less severe course, and highlight shared components involved in anti–COVID-19 immune response

    Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms.

    No full text
    Abdominal aortic aneurysms (AAAs) are a life-threatening disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by macrophage infiltration, and the mechanisms regulating macrophage-mediated inflammation remain undefined. Recent evidence suggests that an epigenetic enzyme, JMJD3, plays a critical role in establishing macrophage phenotype. Using single-cell RNA sequencing of human AAA tissues, we identified increased JMJD3 in aortic monocyte/macrophages resulting in up-regulation of an inflammatory immune response. Mechanistically, we report that interferon-ÎČ regulates Jmjd3 expression via JAK/STAT and that JMJD3 induces NF-ÎșB-mediated inflammatory gene transcription in infiltrating aortic macrophages. In vivo targeted inhibition of JMJD3 with myeloid-specific genetic depletion (JMJD3f/fLyz2Cre+) or pharmacological inhibition in the elastase or angiotensin II-induced AAA model preserved the repressive H3K27me3 on inflammatory gene promoters and markedly reduced AAA expansion and attenuated macrophage-mediated inflammation. Together, our findings suggest that cell-specific pharmacologic therapy targeting JMJD3 may be an effective intervention for AAA expansion.http://deepblue.lib.umich.edu/bitstream/2027.42/178274/2/Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. .pdfPublished versionDescription of Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. .pdf : Published versio
    corecore