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Abstract

The sophistication of gene prediction algorithms and the abundance of RNA-based evidence for

the maize genome may suggest that manual curation of gene models is no longer necessary.

However, quality metrics generated by the MAKER-P gene annotation pipeline identified 17,225

of 130,330 (13%) protein-coding transcripts in the B73 Reference Genome V4 gene set with

models of low concordance to available biological evidence. Working with eight graduate stu-

dents, we used the Apollo annotation editor to curate 86 transcript models flagged by quality

metrics and a complimentary method using the Gramene gene tree visualizer. All of the triaged

models had significant errors–including missing or extra exons, non-canonical splice sites, and

incorrect UTRs. A correct transcript model existed for about 60% of genes (or transcripts)

flagged by quality metrics; we attribute this to the convention of elevating the transcript with the

longest coding sequence (CDS) to the canonical, or first, position. The remaining 40% of flagged

genes resulted in novel annotations and represent a manual curation space of about 10% of the

maize genome (~4,000 protein-coding genes). MAKER-P metrics have a specificity of 100%,

and a sensitivity of 85%; the gene tree visualizer has a specificity of 100%. Together with the

Apollo graphical editor, our double triage provides an infrastructure to support the community

curation of eukaryotic genomes by scientists, students, and potentially even citizen scientists.
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Introduction

Maize is the most important cereal crop, with worldwide production nearly equal to wheat

and rice tonnage combined [1]. Arguably, only the human genome has received greater scien-

tific scrutiny. The maize genome sequence was published in 2009 [2] and was the last and larg-

est genome generated by the same, laborious clone-by-clone method as the human genome.

Improvements in technology have obviated the requirement of bacterial cloning and

decreased DNA sequencing costs 50,000-fold since the initial publication of the maize genome

[3,4]. It now costs about $10,000 to generate 50-fold coverage of an average eukaryotic

genome, and an additional $20,000 to assemble the millions of individual sequence reads into

scaffolds that represent individual chromosomes. However, possession of an assembled

genome sequence is only the beginning to understanding an organism’s biology. Genome

annotation, and/or curation, adds layers of meaning to the bare sequence of As, Ts, Cs, and

Gs. Structural annotation identifies the chromosomal location of a protein-coding gene and

creates one or more transcript models of the arrangement of the coding and noncoding infor-

mation within it. Functional annotation describes elements that control gene transcription,

the biological role of the encoded protein, and domains with specific biological activities. This

article focuses on protein-coding genes, but genomes also contain transfer RNA genes, trans-

posons, and short- and long-noncoding RNAs.

Protein-coding gene prediction relies of two types of evidence. Mathematical evidence is

developed ab initio (from the beginning), directly from the assembled genome sequence. Com-

puter algorithms–such as Genefinder, FGenesH, Augustus, and GeneMark–search for patterns

in DNA sequence that define a gene, including a start codon, amino acid codons, intron/exon

boundaries, and a stop codon. Pattern-based programs typically are trained on a set of repre-

sentative known genes to develop a hidden Markov model (HMM), which identifies organis-

mal biases for these gene features that are “hidden” in DNA sequence. Biological evidence is

provided by experiments that provide mRNA and, to a lesser extent, protein sequences.

Homology-based programs look for similarities between the genome sequence and indepen-

dent RNA and protein evidence from the organism under study and from related organisms.

Modern gene annotation programs, such as MAKER-P used for the reference maize genome,

employ an iterative process to combine both mathematical and biological evidence to produce

increasingly accurate gene models.

Manual annotation, or curation, involves a person evaluating one gene at a time, adding

information and making corrections. Annotation jamborees have provided intensive but spo-

radic annotation efforts. Notably, the Drosophila melanogaster genome underwent an early

round of annotation by a jamboree of volunteers; community involvement was supported by

Apollo, a desktop graphical annotation system [5,6]. Ongoing annotation efforts have focused

on humans and model organisms, including GENCODE/Human and Vertebrate Analysis and

Annotation (HAVANA) [7]. Organism-specific databases, such as FlyBase (Drosophila) [8],

WormBase (Caenorhabditis elegans) [9], and the Arabidopsis Information Resource (TAIR)

[10] –rely primarily on professional curators who focus on functional annotations that add

information to the underlying gene model. In contrast, structural curation improves the

underlying gene model using additional evidence. Curation of gene models relies mainly on

direct input from community members, who discover discrepancies in genes of interest. How-

ever, funding for even prominent curation efforts, such as TAIR, is problematic [11], and 62%

of biological databases are “dead” in within 18 years [12].

More than a decade after the initial annotation of Drosophila melanogaster, all protein-cod-

ing genes, long non-coding RNAs, and pseudogenes were manually annotated by FlyBase

curators using a Gbrowse genome viewer [13,14]. However, in other organisms, it is often
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difficult to determine the percentage of gene models that have actually been reviewed by

human curators. Since the publication of the Caenorhabditis elegans genome two decades ago,

curators have set a “Last_reviewed” field for the structures of about 14,000 of 20,000 coding

sequences. Although many of the remaining structures may have been looked at by a curator,

there is no definitive record of this (Personal communication with G. Williams G, Wormbase,

21 March, 2019). The maize genome was published over a decade ago and has undergone four

revisions. Community members used the yrGATE annotation system [15] to curate 231 genes

of the B73 RefGen_V2 maize genome [16]. These were the only direct structural improve-

ments hosted on Maize GDB; since that time there has been no organized effort to manually

curate maize gene structures (Personal communication with C. Andorf, MaizeGDB, 7 March,

2019). If this is the situation for maize, imagine the status of “orphan genomes” with small

research communities. The skeleton in the closet of genome science is that the majority of

gene models in the vast majority of sequenced genomes, have not been looked at by any

human being–let alone a trained curator. There are good reasons for this.

1. The volume of genome sequence is overwhelming. GenBank contains over 500 different

eukaryotic genomes that have undergone automated annotation at the National Center for

Biotechnology Information (NCBI), with about two new and re-annotated genomes added

per week [17]. One of our groups has sequenced 27 maize inbred lines in under a year.

2. The volume of biological evidence is overwhelming. The Sequence Read Archive (SRA), the

authoritative database for high-throughput data currently has 25.5 quadrillion nucleotides

of sequence information and is doubling every 6–8 months [18]. The MaizeCODE Project

in which we are involved is developing more than 100 DNA and RNA-seq datasets across

five tissues for four maize inbred lines [19]. The scope of curation increases dramatically

when one considers that each human gene has an average of four alternative transcripts

[7,20], and number for maize still needs to be determined. Each RNA-seq experiment from

a different tissue or developmental timepoint potentially adds new isoforms. This presents

a moving target of increasing numbers of alternatively spliced transcripts.

3. Automated gene annotation seems good enough. Retrospective studies in the human genome

have shown that HMMs can correctly identify about 85% of individual exons and every

exon in about 58% of protein-coding genes [21]. An analysis in bread wheat revealed FGe-

nesH as the best gene finder, predicting more than 75% of all the genes correctly [22]. Auto-

mated annotation continues to improve with the increasing availability of RNA-seq and

long-read RNA evidence from single molecule sequencing platforms produced by Pacific

Biosciences and Oxford Nanopore [23]. However, the rapid accumulation of automated

genome annotations creates additional problems, as errors in draft sequences are propa-

gated to orthologous genes in other species [24].

4. There has been little guidance on where to focus effort on structural annotations. Given the

fact that most gene models are correct or nearly correct, there is little potential reward in

inspecting random genes. To date, there have been no recommendations on how to identify

genes in need of manual curation.

Community annotation by students and non-expert researchers is held out as a means to

curate the growing number of sequenced eukaryotic genomes, most of which lack dedicated

funding or database resources. Manual curation provides an ideal way to give students an intu-

itive understanding of gene structure and function, while providing researchers with high-

quality genome data [25]. The Genomic Education Partnership (GEP) involved hundreds of

undergraduate students in manually annotating genes on the Drosophila Muller F elements
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[26]. In another project, undergraduate and graduate students worked with experienced cura-

tors to annotate 530 genes in Diaphorina citri Kuwayama. This non-model insect is the vector

of citrus greening disease that threatens agriculture worldwide [27].

Our needs assessment showed that maize biologists would like to ensure the accuracy of

models for genes they work with and are willing to help out with manual curation. Of 112 PIs,

postdocs, and students we surveyed at the 2017 Maize Genetics Conference, 90% said that

manual annotations of maize gene families would be useful to their research; 60% would par-

ticipate in annotating genes of which they had expert knowledge; and 41% would annotate

genes as a class project (see S1 Appendix).

Given the high accuracy of most automated annotation and the fact that maize genome is

supported by abundant RNA-seq and long-read RNA evidence, we wondered: How can we

focus on genes and transcripts most in need of manual curation? As a corollary, how can we

support maize researchers and undergraduate faculty in a community annotation effort? We

addressed these questions by developing methods to triage maize gene models to identify sus-

pect annotations using MAKER-P quality metrics and the Gramene gene tree visualizer. Then

we enlisted the help of young biologists to edit the triaged genes with a web-enabled version of

Apollo.

Results

Single triage of 47 genes from five maize gene families

We analyzed gene models from the reference sequence of maize B73 (B73 RefGen_V4) [28].

This assembly was annotated with MAKER-P [29], which generates quality metrics that assess

how well a transcript model is supported by available biological evidence. We used two of

these metrics to identify low-quality gene models: Annotation Edit Distance (AED) and Qual-

ity Index 2 (QI2). AED values range between 0 and 1, with 0 denoting perfect concordance

with the available evidence and 1 denoting absence of supporting evidence. One of nine Qual-

ity Indices generated by MAKER-P, QI2 is the fraction of splice sites confirmed by alignments

to RNA evidence. Gene models without introns (therefore no splice sites) are given a QI2

value of 0 [30]. Some gene models, particularly those generated by ab initio methods, can show

low metrics due to a lack of supporting evidence. To ensure the availability of evidence to use

in manual curation, we flagged genes with:

1. AED scores less than 0.5 (AED < 0.5)–denoting gene models with sufficient evidence to

make annotation judgements, but also with

2. QI2 values between 0.33 and 0.75 (QI2 0.33–0.75)–denoting gene models with intermediate

fraction of splice sites confirmed by RNA alignments.

Applying these quality metrics identified 17,225 of 130,330 (13%) protein-coding tran-

scripts in the B73 RefGen_V4 with low concordance to available biological evidence.

We tested the utility of this triage in a mini-annotation jamboree held in December 2017 at

Cold Spring Harbor Laboratory (CSHL). We reasoned that participants would be more

engaged by working with genes related to their own research or with obvious biological signifi-

cance. Therefore, we focused on five well-known gene families: PIN-formed (PIN), Gretchen-

hagen-3 (GH3), ATP-binding cassette (ABC), cycloid and teosinte branched (TCP) and origin

recognition complex (ORC). During the two-day event, nine graduate students and one post-

doctoral fellow examined 40 genes having four or fewer transcripts. This resulted in the cura-

tion of 57 transcripts from these genes families, including 11 transcripts flagged by quality

metrics and two unflagged transcripts. The transcripts were edited in Apollo, the graphical
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annotation editor developed to curate the Drosophila genome. We used the web-enabled ver-

sion, which is significantly easier to use and readily supports community annotation [31].

All 11 of the flagged models required curation. Six (55%) were missing one or more exons,

while two (18%) had an extra exon. Nine (82%) had exons with incorrect lengths, including

two (18%) with non-canonical splice sites. Fig 1 provides an example of an exon curation in

the PIN family. We were able to extend untranslated regions (UTRs) in three (27%) of the

transcripts. Six (55%) of the curated models matched another transcript model for the same

gene. Expressed another way, 45% of curations were “novel” (see “Single Triage,” Table 1 and

S1 Table).

Double triage of 419 classical maize genes

We extended our analysis to a set of “classical” maize genes, which represent well-studied

genetic loci that have been cloned [32]. We used an updated list at MaizeGDB [33]. About one

quarter of classical genes were first identified by a visible mutant phenotype–and include

many markers used to make genetic maps before the availability of molecular markers. We

analyzed the canonical (longest protein-coding) transcript of 419 classical genes having 2,127

transcripts and representing 277 distinct families. In addition to generating a list of genes with

low quality metrics, Jamboree group members inspected the classical gene models with the

gene tree visualizer at Gramene, a comparative database with 58 plant genomes (http://www.

gramene.org) [34]. This tool displays a phylogenetic tree and alignments between the trans-

lated protein sequences of one classical gene and its homologs across species. Discrepancies in

alignments are shown as insertions or deletions. Each week, 10–20 classical genes were triaged

independently by two-three group members using the gene tree visualizer. Fig 2 provides an

example of the classical gene BRICK1 [35, 36] that was flagged using the gene tree visualizer.

The combination of MAKER-P quality metrics and inspection with the gene tree visualizer

constituted a double triage, which identified 86 genes, or 21% of the classical gene set (see S2

Fig 1. Curation of exon 3 of PIN9 (Zm00001d043179). Exons of incorrect length were the most common error detected by both

triage methods. The Apollo editing window shows a “User-created annotation” at top followed by the longer, incorrect B73

RefGen_V4 model (“MAKER_updated”). The shortened exon was supported by aligned evidence: protein sequences from

sorghum and rice, assembled long Iso-Seq reads combined from six tissues, and RNA-seq from roots, among other tissues.

https://doi.org/10.1371/journal.pone.0224086.g001
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Table). Of these, 40 genes were flagged solely by quality metrics, 34 were flagged solely by gene

tree visualization, and 12 were flagged by both methods. Fig 3 shows the workflow that identi-

fied these different but overlapping sets of genes for manual curation. We used an iterative

process to annotate these genes over a 12-month period. Curators presented their models for

peer review during periodic video conferences to troubleshoot methods and suggest improved

annotations. Table 1 (above) compares the annotation errors and characteristics of genes iden-

tified using the double triage of quality metrics and gene tree inspection.

Curation of an exceptional gene family

Five of the 12 maize genes in the acidic invertase gene family were included in the classic gene

set we curated. Two members were flagged by MAKER-P quality metrics and annotated in

Apollo (INVVR2 and INVCW3). Prompted by a recent report of potential annotation errors

in members of this family [37], we undertook an in-depth evaluation of all 12 family members

(see S3 Table). Alignment with available evidence confirmed the presence of a 9-nucleotide

mini-exon encoding a tripeptide that had been included in B73 RefGen_V3 models for six

family members. This conserved DPN peptide is predicted to be the active site of a β-fructosi-

dase or invertase [38–41]. We discovered this mini-exon in four additional family members,

which had not been previously reported. We also identified a novel 19-nt exon in INVCW4, a

cell wall invertase (Fig 4).

Table 1. Annotation errors and characteristics of maize genes identified by quality metrics and gene trees. Errors found in 11 genes flagged by quality metrics in five

maize gene families (25 transcripts). Errors found in 40 genes flagged by quality metrics, 34 genes flagged by gene trees and 12 genes flagged by both methods in 419 maize

classical genes (2,127 transcripts).

Single Triage

(40 Genes from 5 Families)

Double Triage

(419 Classical Genes)

%

Quality Metrics

(11 genes)

%

Quality Metrics

(40 genes)

%

Gene Trees

(34 genes)

%

Quality Metrics and Gene Trees

(12 genes)

Annotation Errors

Missing exon(s) 55 53 29 33

Extra exon(s) 18 28 24 33

Different exon length(s) 82 60 52 100

Non-canonical splice site(s) 27 5 6 50

Extend UTR(s) 18 5 50 42

Gene Characteristics

Single transcript gene 45 23 56 8

Existing model (multiple transcripts) 55 67 24 58

Novel curation 45 33 76 42

https://doi.org/10.1371/journal.pone.0224086.t001

Fig 2. Triage of BRICK1 (Zm00001d018535) with the Gramene gene tree visualizer. Comparison to closest plant orthologs and maize

paralogs revealed that the B73 RefGen_V4 model was missing the entire 5’ end. BRICK genes function in a common pathway to promote

polarized cell division and cell morphogenesis in the maize leaf epidermis. The humans ortholog of BRICK1 (BRK1) is required for cell

proliferation and cell transformation by oncogenes. Notably, patients with Von Hippel-Lindau syndrome normally develop tumors, but

those lacking a functional Brk1 gene are protected from tumorigenesis.

https://doi.org/10.1371/journal.pone.0224086.g002
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Discussion

We have demonstrated that there is significant room for improving the annotations of even

well documented protein-coding genes within a well-studied genome, such as maize. Our

studies show that MAKER-P quality metrics and the Gramene gene tree visualizer offer effec-

tive and complementary triages to identify poor-quality gene models. All of the genes flagged

by quality metrics and gene trees required curation; a specificity of 100% for both methods.

Sensitivity was more difficult to assess with our data set, but quality metrics had a sensitivity of

85% to detect annotation errors.

Each triage has its strengths and weaknesses. MAKER-P quality metrics can be used to

quickly generate list of suspected genes in any genome. The majority of genes flagged by this

method had multiple transcripts, and the curated models frequently matched an existing tran-

script model in the v4 gene set. So, this triage produced a lower percentage of novel curations.

The gene tree visualizer takes more time, but provides a wholistic, phylogenetic approach to

curation. This method aligns related orthologs and performed well with the classical genes,

which tend to be highly conserved across grasses. The majority of genes identified by gene

trees had a single transcript and produced novel annotations. Gene trees picked up genes

missed by quality metrics triage, and thus provides a complement to the automated method.

Fig 3. Flowchart of the double triage of classical maize genes and comparative number of genes flagged for

curation by quality metrics and gene trees. Parallel methods–MAKER-P quality metrics (blue) and the gene tree

visualizer (yellow)–produced different but overlapping sets of genes for manual curation. Genes with five of more

transcripts were excluded.

https://doi.org/10.1371/journal.pone.0224086.g003
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Our initial triage of the B73 RefGen_V4 gene set with quality metrics flagged 13% of the

protein-coding transcripts for potential annotation errors. However, a correct annotation

existed for about 60% of the flagged transcripts we edited. The V4 gene annotation used the

Ensembl platform [42], which set the isoform with the longest coding sequence (CDS) as the

canonical transcript. Our study suggests that a majority of transcripts elevated to canonical sta-

tus on length alone are incorrect and that the transcript with the lowest AED is the best choice

for a canonical model. This explains why in the gene family analysis, in most cases, the tran-

script with the lowest AED was the correct one. We will use this information to tune

MAKER-P for the annotation of maize version 5, and we recommend that quality metrics be

considered in selecting the primary transcript in other genomes. In this way curation can pro-

vide feedback to make informed updates to automated annotation systems.

We have demonstrated that there is interest in community annotation, and we have pro-

vided a method to make this possible. Researchers are willing to commit time to manual cura-

tion, because they realize the negative impact of poor models to their research. Improvement

of reference sequences will be especially important as we move toward synthetic biology. We

believe that our dual triage is the missing link in popularizing community and even citizen sci-

ence annotation. It focuses on the fraction of gene models that demands attention. Gene triag-

ing generates and maintains interest by ensuring that each curation effort will be rewarded

with new contributions to genome science.

Fig 4. Curation of two mini-exons in INVCW4 (Zm00001d001941). The Apollo editing window shows a “User-created annotation” at top, followed by incorrect B73

RefGen_V4 model (“MAKER_updated”) and “v3 model mapped to v4.” A conserved 9-nucleotide exon (red circle) and a novel 19-nucleotide exon (blue circle) were

supported by protein sequences from sorghum and rice, assembled EST transcripts from ultra-deep sequencing, long Iso-Seq reads combined from six tissues, and RNA-

seq from root and other tissues.

https://doi.org/10.1371/journal.pone.0224086.g004
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Materials and methods

We surveyed 119 attendees of the 59th Annual Maize Genetics Conference, March 10–12,

2017. Participants were selected randomly and asked to confidentially complete an online

questionnaire on a handheld tablet. The results were tabulated in Survey Monkey and analyzed

using IBM SPSS Statistics 23. All survey activities were reviewed and approved by the Cold

Spring Harbor Laboratory Institutional Review Board (IRB no. 17–007).

The B73 reference sequence (B73 RefGen_V4) was annotated with MAKER-P version 3.1

[28]. This bioinformatics pipeline integrated ab initio gene prediction with publicly available

evidence from full-length cDNA [43], de novo assembled transcripts from short-read mRNA

sequencing (RNA-seq) [44], isoform-sequencing (Iso-Seq) full-length transcripts [45], and

proteins from Sorghum bicolor, Oryza sativa, Setaria italica, Brachypodium distachyon, and

Arabidopsis thaliana [34].

Apollo (http://genomearchitect.github.io/) is a genome annotation platform originally devel-

oped to support annotation of theDrosophila genome. The latest version of Apollo is web-based

and built on the popular JBrowse genome browser. Apollo displays as features experimental data

(e.g. RNA-seq data, cDNAs, or other imported data sets) as well as predictions from gene annota-

tion pipelines (e.g. transcripts, variant calls, repeat regions, etc.). The features (available in the “Evi-

dence Area” of the interface) can be imported from any of several file formats, including GFF3,

BAM, GTF, GVF, GenBank, BED, BigWig, or Chado database. Users can drag one or more fea-

tures from the “Evidence Area” to the “Editing Area” to synthesize a new or refined annotation of

a gene. Most editing is done through intuitive drag or drag-and-drop manipulations. Additional

menus manage display parameters. Apollo records a complete editing history of a user-created

annotation, and also allows for real-time collaboration on a project. Apollo’s rich set of features

offers a scalable and integrated platform that has supported several community annotation efforts.

The Gramene gene tree visualizer provides an interactive interface to inspect protein sequence

alignments for a given gene family and identify genes with potential annotation errors. Align-

ments are shown as the branches of a phylogenetic tree centered on a gene of interest, and a sim-

ple click allows the tree to be rearranged around the center on a different gene within the same

tree. Three display modes allow the trees to be explored at various levels: 1) In the Alignment

Overview, InterPro Scan descriptions are accessed by clicking on color-coded domains, 2) in the

Multiple Sequence Alignment view, a slider is dragged to scan the amino sequence and select a

standard color schema (such as Clustal, Zappo, or helix propensity), 3) In the Neighborhood Con-

servation view, 10 flanking genes are displayed on each side of the gene of interest, color-coded by

gene family. For this project, we extended the interface to let users flag genes for further curation

(http://curate.gramene.org). We set up a python/flask web service and database to store and

review the results. Phylogenetic trees available in the viewer were generated via the Ensembl Com-

para pipeline [46] using amino acid sequences from 52 species in Gramene build 56.

All of our novel annotations are available as a separate track (“curated_apollo_annota-

tions”) in the Gramene browser. Go to http://news.gramene.org/curated_maize_v4_gene_

models, and click on the “Genomic coordinates” of a gene of interest. This will pull up a Gra-

mene browser window centered on that gene. Scroll down to view the gene models. Our anno-

tations are also available in gff3 format at Track Hub Registry (ftp://ftp.gramene.org/pub/

gramene/CURRENT_RELEASE/gff3/zea_mays/apollo_annotations_maize_v4.gff3).
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