468 research outputs found

    A New Framework for Distributed Submodular Maximization

    Full text link
    A wide variety of problems in machine learning, including exemplar clustering, document summarization, and sensor placement, can be cast as constrained submodular maximization problems. A lot of recent effort has been devoted to developing distributed algorithms for these problems. However, these results suffer from high number of rounds, suboptimal approximation ratios, or both. We develop a framework for bringing existing algorithms in the sequential setting to the distributed setting, achieving near optimal approximation ratios for many settings in only a constant number of MapReduce rounds. Our techniques also give a fast sequential algorithm for non-monotone maximization subject to a matroid constraint

    The Power of Randomization: Distributed Submodular Maximization on Massive Datasets

    Full text link
    A wide variety of problems in machine learning, including exemplar clustering, document summarization, and sensor placement, can be cast as constrained submodular maximization problems. Unfortunately, the resulting submodular optimization problems are often too large to be solved on a single machine. We develop a simple distributed algorithm that is embarrassingly parallel and it achieves provable, constant factor, worst-case approximation guarantees. In our experiments, we demonstrate its efficiency in large problems with different kinds of constraints with objective values always close to what is achievable in the centralized setting

    Incorporation of metal-chelating unnatural amino acids into halotag for allylic deamination

    Get PDF
    The potential of artificial metalloenzymes has led to an increase in interest for the design of novel metal-binding sites in proteins. Metal-chelating unnatural amino acids offer an auspicious solution to engineer active metal sites in a defined way. Herein, we describe the introduction of four metal-chelating unnatural amino acids into HaloTag, an attractive scaffold for the assembly of functional artificial metalloenzymes. HaloTag, engineered with 2-amino-3-(8-hydroxyquinolin-5-yl)propanoic acid (HQ-Ala-1) was used to assemble an artificial metalloenzyme for improved allylic deamination upon complementation with [(η5-C5H5)Ru(MeCN)3]+

    HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridium Dye

    Get PDF
    HaloTag is a small self-labeling protein that is frequently used for creating fluorescent reporters in living cells. The small-molecule dyes used with HaloTag are almost exclusively based on rhodamine scaffolds, which are often expensive and challenging to synthesize. Herein, we report the engineering of HaloTag for use with a chemically accessible, inexpensive fluorophore based on the dimethylamino-styrylpyridium dye. Through directed evolution, the maximum fluorogenicity and the apparent second-order bioconjugation rate constants could be improved up to 4-fold and 42-fold, respectively. One of the top variants, HT-SP5, enabled reliable imaging in mammalian cells, with a 113-fold fluorescence enhancement over the parent protein. Additionally, crystallographic characterization of selected mutants suggests the chemical origin of the fluorescent enhancement. The improved dye system offers a valuable tool for imaging and illustrates the viability of engineering self-labeling proteins for alternative fluorophores

    HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridium Dye

    Full text link
    HaloTag is a small self-labeling protein that is frequently used for creating fluorescent reporters in living cells. The small-molecule dyes used with HaloTag are almost exclusively based on rhodamine scaffolds, which are often expensive and challenging to synthesize. Herein, we report the engineering of HaloTag for use with a chemically accessible, inexpensive fluorophore based on the dimethylamino-styrylpyridium dye. Through directed evolution, the maximum fluorogenicity and the apparent second-order bioconjugation rate constants could be improved up to 4-fold and 42-fold, respectively. One of the top variants, HT-SP5, enabled reliable imaging in mammalian cells, with a 113-fold fluorescence enhancement over the parent protein. Additionally, crystallographic characterization of selected mutants suggests the chemical origin of the fluorescent enhancement. The improved dye system offers a valuable tool for imaging and illustrates the viability of engineering self-labeling proteins for alternative fluorophores

    The Expanded Evidence-Centered Design (e-ECD) for Learning and Assessment Systems: A Framework for Incorporating Learning Goals and Processes Within Assessment Design

    Get PDF
    Evidence-centered design (ECD) is a framework for the design and development of assessments that ensures consideration and collection of validity evidence from the onset of the test design. Blending learning and assessment requires integrating aspects of learning at the same level of rigor as aspects of testing. In this paper, we describe an expansion to the ECD framework (termed e-ECD) such that it includes the specifications of the relevant aspects of learning at each of the three core models in the ECD, as well as making room for specifying the relationship between learning and assessment within the system. The framework proposed here does not assume a specific learning theory or particular learning goals, rather it allows for their inclusion within an assessment framework, such that they can be articulated by researchers or assessment developers that wish to focus on learning

    Linac-Based Radiosurgery for Patients With Brain Oligometastases From a Breast Primary, in the Trastuzumab Era-Impact of Tumor Phenotype and Prescribed SRS Dose

    Get PDF
    Background: The role of stereotactic radiosurgery (SRS) in the treatment of limited numbers of brain metastases in selected breast cancer patients is well-established.Aims: To analyse outcome from a single institutional experience with SRS, to identify any significant prognostic factors and to assess the influence of Her-2, estrogen receptor status, and prescribed dose on outcome.Methods: The medical records of 56 patients treated at in a single institution between 2009 and 2014 were reviewed. Demographic, treatment related and outcome data were analyzed to identify prognostic factors in this patient population. The primary endpoints were overall survival and local control. Secondary endpoint was distant intra-cranial progression-free survival.Results: The median follow- up time for the entire cohort was 10.33 months (1.25–97.28). The overall median survival was 12.5months (95%CI = 5.8–19.2), with 53.3%, and 35.8% surviving at 1- and 2- years post-SRS. After adjustment for the effect of Her 2 status, uncontrolled extra-cranial disease at the time of SRS predicted for shorter survival (HR for death = 3.1, 95% CI = 1.4–6.9, p = 0.006). At the time of death, 75% of the patients had active, uncontrolled intra-cranial disease, with 56% these patients presenting intra-cranial disease only. Sustained local control was observed in 56 (59.6%) of 94 treated metastases. In univariate analysis, Her2 status, ERHer2 group status?, and prescribed SRS dose were highly significant for local progression free-survival (LPFS). After adjustment for the effect of Her 2 status, patients receiving 12–16 Gy can expect shorter LPFS than those receiving 18–20 Gy (HR = 1.7, 95% CI = 1.0–2.8, p = 0.043). After adjustment for the effect of dose group, patients with Her 2 negative cancer can expect shorter LPFS than those with Her 2 positive cancer (HR = 2.6, 95% CI = 1.5–4.4, p < 0.0005). Use of prior WBRT did not impact survival, local or distant intra-cranial progression-free survival.Conclusions: Survival outcome is similar to the published literature. Improved outcomes are observed in patients with Her 2-positive, controlled extracranial disease at the time of SRS and higher SRS dose delivered. Achieving intra-cranial control appears to be an important factor for the survival of the breast cancer patients in the era of targeted therapies

    Early pre-radiographic structural pathology precedes the onset of accelerated knee osteoarthritis.

    Get PDF
    BACKGROUND: Accelerated knee osteoarthritis (AKOA) is characterized by more pain, impaired physical function, and greater likelihood to receive a joint replacement compared to individuals who develop the typical gradual onset of disease. Prognostic tools are needed to determine which structural pathologies precede the development of AKOA compared to individuals without AKOA. Therefore, the purpose of this manuscript was to determine which pre-radiographic structural features precede the development of AKOA. METHODS: The sample comprised participants in the Osteoarthritis Initiative (OAI) who had at least one radiographically normal knee at baseline (Kellgren-Lawrence [KL] grade  3) and No AKOA. The index visit was the study visit when participants met criteria for AKOA or a matched timepoint for those who did not develop AKOA. Magnetic resonance (MR) images were assessed for 12 structural features at the OAI baseline, and 1 and 2 years prior to the index visit. Separate logistic regression models (i.e. OAI baseline, 1 and 2 years prior) were used to determine which pre-radiographic structural features were more likely to antedate the development of AKOA compared to individuals not developing AKOA. RESULTS: At the OAI baseline visit, degenerative cruciate ligaments (Odds Ratio [OR] = 2.2, 95% Confidence Interval [CI] = 1.3,3.5), infrapatellar fat pad signal intensity alteration (OR = 2.0, 95%CI = 1.2,3.2), medial/lateral meniscal pathology (OR = 2.1/2.4, 95%CI = 1.3,3.4/1.5,3.8), and greater quantitative knee effusion-synovitis (OR = 2.2, 95%CI = 1.4,3.4) were more likely to antedate the development of AKOA when compared to those that did not develop AKOA. These results were similar at one and two years prior to disease onset. Additionally, medial meniscus extrusion at one year prior to disease onset (OR = 3.5, 95%CI = 2.1,6.0) increased the likelihood of developing AKOA. CONCLUSIONS: Early ligamentous degeneration, effusion/synovitis, and meniscal pathology precede the onset of AKOA and may be prognostic biomarkers

    Composite quantitative knee structure metrics predict the development of accelerated knee osteoarthritis:data from the osteoarthritis initiative

    Get PDF
    BACKGROUND: We aimed to determine if composite structural measures of knee osteoarthritis (KOA) progression on magnetic resonance (MR) imaging can predict the radiographic onset of accelerated knee osteoarthritis. METHODS: We used data from a nested case-control study among participants from the Osteoarthritis Initiative without radiographic KOA at baseline. Participants were separated into three groups based on radiographic disease progression over 4 years: 1) accelerated (Kellgren-Lawrence grades [KL] 0/1 to 3/4), 2) typical (increase in KL, excluding accelerated osteoarthritis), or 3) no KOA (no change in KL). We assessed tibiofemoral cartilage damage (four regions: medial/lateral tibia/femur), bone marrow lesion (BML) volume (four regions: medial/lateral tibia/femur), and whole knee effusion-synovitis volume on 3 T MR images with semi-automated programs. We calculated two MR-based composite scores. Cumulative damage was the sum of standardized cartilage damage. Disease activity was the sum of standardized volumes of effusion-synovitis and BMLs. We focused on annual images from 2 years before to 2 years after radiographic onset (or a matched time for those without knee osteoarthritis). To determine between group differences in the composite metrics at all time points, we used generalized linear mixed models with group (3 levels) and time (up to 5 levels). For our prognostic analysis, we used multinomial logistic regression models to determine if one-year worsening in each composite metric change associated with future accelerated knee osteoarthritis (odds ratios [OR] based on units of 1 standard deviation of change). RESULTS: Prior to disease onset, the accelerated KOA group had greater average disease activity compared to the typical and no KOA groups and this persisted up to 2 years after disease onset. During a pre-radiographic disease period, the odds of developing accelerated KOA were greater in people with worsening disease activity [versus typical KOA OR (95% confidence interval [CI]): 1.58 (1.08 to 2.33); versus no KOA: 2.39 (1.55 to 3.71)] or cumulative damage [versus typical KOA: 1.69 (1.14 to 2.51); versus no KOA: 2.11 (1.41 to 3.16)]. CONCLUSIONS: MR-based disease activity and cumulative damage metrics may be prognostic markers to help identify people at risk for accelerated onset and progression of knee osteoarthritis
    corecore