840 research outputs found
Dryland maize yields and water use efficiency in response to tillage and nutrient management practices in China
Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage and nutrient management practices on maize (Zea mays L.) yield and water use efficiency (WUE), at Shouyang Dryland Farming Experimental Station in northern China during 2003-2008. The experiment was set-up using a split-plot design with 3 tillage methods as main treatments: conventional, reduced (till with crop residue incoperated in fall but no-till in spring), and no-till. Sub-treatments were 3 NP fertilizer rates: 105-46, 179-78 and 210-92 kg N and P ha. -1 Maize grain yields were greatly influenced by the amount of growing season rainfall, and by soil water contents at sowing. Mean grain yields over the 6-year period in response to tillage treatments were 5604, 5347 and 5185 kg ha, under reduced, no-till and conventional tillage, respectively. Mean WUE was 13.7, 13.6 and 12.6 kg ha mm under reduced, no-till, and conventional tillage, respectively. Mean soil water contents at sowing and at harvest were significantly influenced by tillage treatments. At harvest time, the no-till treatment had ~8-12% more water in the soil than the conventional and reduced tillage treatments. Under conventional tillage, grain yields increased with NP fertilizer application rates. However, under reduced tillage, grain yields were highest with lowest NP fertilizer application rate. In conclusion, grain yields and WUE were highest under reduced tillage at modest NP fertilizer application rates of 105 kg N and 46 kg P per ha. No-till increased soil water storage by 8-12% and improved WUE compared to conventional tillage
Metastable behavior of vortex matter in the electronic transport processes of homogenous superconductors
We study numerically the effect of vortex pinning on the hysteresis voltage-temperature (V-T) loop of vortex matter. It is found that different types of the V-T loops result from different densities of vortex pinning center. An anticlockwise V-T loop is observed for the vortex system with dense pinning centers, whereas a clockwise V-T loop is brought about for vortices with dilute pinning centers. It is shown that the size of the V-T loop becomes smaller for lower experimental speed, higher magnetic field, or weak pinning strength. Our numerical observation is in good agreement with experiments
Universal quantum gates based on a pair of orthogonal cyclic states: Application to NMR systems
We propose an experimentally feasible scheme to achieve quantum computation
based on a pair of orthogonal cyclic states. In this scheme, quantum gates can
be implemented based on the total phase accumulated in cyclic evolutions. In
particular, geometric quantum computation may be achieved by eliminating the
dynamic phase accumulated in the whole evolution. Therefore, both dynamic and
geometric operations for quantum computation are workable in the present
theory. Physical implementation of this set of gates is designed for NMR
systems. Also interestingly, we show that a set of universal geometric quantum
gates in NMR systems may be realized in one cycle by simply choosing specific
parameters of the external rotating magnetic fields. In addition, we
demonstrate explicitly a multiloop method to remove the dynamic phase in
geometric quantum gates. Our results may provide useful information for the
experimental implementation of quantum logical gates.Comment: 9 pages, language revised, the publication versio
Non-adiabatic geometrical quantum gates in semiconductor quantum dots
In this paper we study the implementation of non-adiabatic geometrical
quantum gates with in semiconductor quantum dots. Different quantum information
enconding/manipulation schemes exploiting excitonic degrees of freedom are
discussed. By means of the Aharanov-Anandan geometrical phase one can avoid the
limitations of adiabatic schemes relying on adiabatic Berry phase; fast
geometrical quantum gates can be in principle implementedComment: 5 Pages LaTeX, 10 Figures include
Theory of ac electrokinetic behavior of spheroidal cell suspensions with an intrinsic dispersion
The dielectric dispersion, dielectrophoretic (DEP) and electrorotational (ER)
spectra of spheroidal biological cell suspensions with an intrinsic dispersion
in the constituent dielectric constants are investigated. By means of the
spectral representation method, we express analytically the characteristic
frequencies and dispersion strengths both for the effective dielectric constant
and the Clausius-Mossotti factor (CMF). We identify four and six characteristic
frequencies for the effective dielectric spectra and CMF respectively, all of
them being dependent on the depolarization factor (or the cell shape). The
analytical results allow us to examine the effects of the cell shape, the
dispersion strength and the intrinsic frequency on the dielectric dispersion,
DEP and ER spectra. Furthermore, we include the local-field effects due to the
mutual interactions between cells in a dense suspension, and study the
dependence of co-field or anti-field dispersion peaks on the volume fractions.Comment: accepted by Phys. Rev.
Producing the event ready two photon polarization EPR state with linear optics devices
We propose a scheme to produce the maximally two photon polarization
entangled state(EPR state) with single photon sources and the linear optics
devices. In particular, our scheme requires the photon detectors only to
distinguish the vacuum and non-vacuum Fock number states. A sophisticated
photon detector distinguishing one or two photon states is unnecessary.Comment: Published in Phys. Rev. A alread
Quantization of adiabatic pumped charge in the presence of superconducting lead
We investigate the parametric electron pumping of a double barrier structure
in the presence of a superconducting lead. The parametric pumping is
facilitated by cyclic variation of the barrier heights and of the
barriers. In the weak coupling regime, there exists a resonance line in the
parameter space so that the energy of the quasi-bound state is in
line with the incoming Fermi energy. Levinson et al found recently that the
pumped charge for each pumping cycle is quantized with for normal
structure when the pumping contour encircles the resonance line. In the
presence of a superconducting lead, we find that the pumped charge is quantized
with the value
Optimal quantum pump in the presence of a superconducting lead
We investigate the parametric pumping of a hybrid structure consisting of a
normal quantum dot, a normal lead and a superconducting lead. Using the time
dependent scattering matrix theory, we have derived a general expression for
the pumped electric current and heat current. We have also derived the
relationship among the instantaneous pumped heat current, electric current, and
shot noise. This gives a lower bound for the pumped heat current in the hybrid
system similar to that of the normal case obtained by Avron et al
Spin-filtering and charge- and spin-switching effects in a quantum wire with periodically attached stubs
Spin-dependent electron transport in a periodically stubbed quantum wire in
the presence of Rashba spin-orbit interaction (SOI) is studied via the
nonequilibrium Green's function method combined with the Landauer-Buttiker
formalism. The coexistence of spin filtering, charge and spin switching are
found in the considered system. The mechanism of these transport properties is
revealed by analyzing the total charge density and spin-polarized density
distributions in the stubbed quantum wire. Furthermore, periodic spin-density
islands with high polarization are also found inside the stubs, owing to the
interaction between the charge density islands and the Rashba SOI-induced
effective magnetic field. The proposed nanostructure may be utilized to devise
an all-electrical multifunctional spintronic device.Comment: 4 pages, 4 figure
Quantum information processing using Josephson junctions coupled through cavities
Josephson junctions have been shown to be a promising solid-state system for
implementation of quantum computation. The significant two-qubit gates are
generally realized by the capacitive coupling between the nearest neighbour
qubits. We propose an effective Hamiltonian to describe charge qubits coupled
through the cavity. We find that nontrivial two-qubit gates may be achieved by
this coupling. The ability to interconvert localized charge qubits and flying
qubits in the proposed scheme implies that quantum network can be constructed
using this large scalable solid-state system.Comment: 5 pages, to appear in Phys Rev A; typos corrected, solutions in last
eqs. correcte
- …