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Quantum-information processing using Josephson junctions coupled through cavities
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Josephson junctions have been shown to be a promising solid-state system for implementation of quantum
computation. The two-qubit gates are generally realized by the capacitive coupling between the nearest-
neighbor qubits. We propose an effective Hamiltonian to describe charge qubits coupled through the micro-
wave cavity. We find that nontrivial two-qubit gates may be achieved by this coupling. The ability to inter-
convert localized charge qubits and flying qubits in the proposed scheme implies that quantum network can be
constructed using this large scalable solid-state system.
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Quantum-information processing~QIP! with a large num-
ber of qubits is now attracting increasing interest. So fa
number of systems have been proposed as potentially vi
qubit models. Among a variety of qubits implemented, sol
state qubits are of particular interest because of their po
tial suitability for integrated devices. Charge qubits based
Josephson junctions have been shown to be a promi
solid-state candidate for implementation of quantum com
tation ~QC! @1–8#. QIP tasks usually involve not only com
putation but also communication. However, whether Jose
son junctions are also suitable for quantum communicatio
still an important open question.

The basic criteria for QIP have been described in Re
@9,10#. Among them, realization of a universal set of qua
tum gates plays a central role in QC. Besides that the g
can act on any pair of qubits is also a necessary elemen
fault tolerant computation@10#. Moreover, the ability to in-
terconvert stationary and flying qubits, and to faithfu
transmit flying qubits between specified nodes are also
quired for quantum communication@9#.

In this paper, we show that a new system consisting
Josephson junctions coupled through microwave cavities
fills the above requirements, and thus is a promising ca
date for QIP. This system possesses at least three distin
merits.

~i! A serious limitation of solid-state computers is that t
decoherence time in these systems is relatively short. H
ever, from the report in a recent experiment, it is possi
that quantum coherence of a large number qubits may
easier to maintain if junctions locate within a high qual
microwave cavity@11#.

~ii ! The nontrivial two-qubit gate acting on any pair
qubits can be realized, and possible fault tolerant geome
quantum computation@5–7# proposed in the absent of cavit
is still workable. Thus the combination of different fault to
erant approaches is possible and may be helpful for o
coming the infamous decoherence effects. Here we provi
new experimentally feasible method to realize two-qu
gates: coupling charge qubits through a high quality cav
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and show that the combination of capacitive as well as ca
coupling in symmetric superconducting quantum interf
ence device~SQUID! or just the cavity coupling in asymmet
ric SQUID allow the implementation of two-qubit gates b
tween any pair of qubits.

~iii ! The present scheme is able to interconvert station
charge qubits and flying photon qubits, and faithfully tran
mit flying qubits between specified nodes in quantum n
work. The ideal quantum transmission between charge qu
in different cavities can be achieved by cavity QED tec
niques@12#. Thus the quantum network based on solid-st
quantum computers may be connected by using transmis
fibre, and photons as flying qubits in the scheme clearly r
resent the best qubit carrier for fast and reliable commun
tion over long distances.

The single-Josephson-junction qubit we considered
shown in Fig. 1~a! @3#. It consists of a small superconductin
box with n excess Cooper-pair charges, formed by a SQU
with capacitancesCJm (m51,2) and Josephson coupling e
ergiesEJm , pieced by a magnetic fluxf. A control gate
voltageVg is connected to the system via a gate capac
Cg . The Hamiltonian of the system becomes

H5Ech~n2n̄!22EJ1cosg12EJ2cosg2 , ~1!

FIG. 1. Josephson qubit systems.~a! A single-Josephson qubit
~b! Josephson qubits in a cavity.~c! Josephson qubits in cavitie
connected by transmission fibre.
©2003 The American Physical Society03-1
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where n is the number operator of~excess! Cooper-pair
charges on the box,Ech52e2/(Cg1CJ11CJ2) is the charg-
ing energy,n̄5CgVg/2 is the induced charge and can
controlled by changingVg . gm is the gauge-invariant phas
difference between points on opposite sides of themth
junction. Assuming that the Josephson junction loca
within a single-mode resonant cavity, thengm5wm
2(2p/f0)* l m

Am•dlm , wherewm is the phase difference~of

the superconducting wave function! across themth junction
in a particular gauge, and may take the same valuew @13#.
Am is the vector potential in the same gauge, and the
integral is taken across themth junction and along the arrow
in Fig. 1~a!. Am may be divided into two partsAm8 1Am

f ,
where the first term arises from the electromagnetic field
the cavity normal mode~which can be described as an osc
lator! and the second term arises from the magnetic fluxf.
In the Coulomb gauge,Am8 takes the formA\/2vV(a

1a†) ê @13#, where ê is the unit polarization vector of the
cavity mode,V is the volume of the cavity,a anda† are the
annihilation and creation operators for the quantum osc
tors, andv is its frequency. Therefore, we have

2p

f0
E

l m

Am•dlm5
2p

f0
E

l m

Am
f
•dlm1g~a1a†!, ~2!

whereg52eê• l/A2«vV\ is the coupling constant betwee
the junctions and the cavity, withl the thickness of the insu
lating layer in the junction. For simplicity, we assume th
gm5g. As for Af, we have another constraint:rCAfdl
5f, where the integral pathC is along the dashed line in
Fig. 1~a!.

We consider systems in the charging regime whereEch
@EJm , then a convenient basis is formed by the cha
states, parametrized by the number of Cooper pairsn on the
box, andw is its conjugate,n52 i\]/](w). They satisfy the
standard commutation relation:@w,n#5 i . In this basis
Hamiltonian~1! reads

H5(
n

FEch~n2n̄!2un&^nu2
EJ~f!

2
~e2 i [g(a1a†)1b] un11&

3^nu1H.c.!G , ~3!

where

tanb5
EJ12EJ2

EJ11EJ2
tanS pf

f0
D , ~4!

EJ~f!5A~EJ12EJ2!214EJ1EJ2cos2~pf/f0!, ~5!

with f05p\/e being the flux quantum. At temperatur
much lower than the charging energy and the gate volt
tuning close to a degeneracy (n̄;1/2), the relevant physics
is captured by considering only the two charge eigenst
n50,1, which constitute the basis$u0&,u1&% of the computa-
tion Hilbert space of the qubit.
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If we have N such qubits located within a single-mod
cavity @Fig. 1~b!#, to a good approximation, the total syste
can be considered asN two-state systems coupled to a qua
tum harmonic oscillator@13#. In this case, the system consid
ered here can be described by the HamiltonianH5H0
1Hint , where

H05\nS a†a1
1

2D1(
j

N

En̄k
s j

z , ~6!

Hint52
1

2 (
j

N

EJ~f j !~e2 i [g(a1a†)1b j ]s j
11H.c.!, ~7!

with En̄k
5Ech(n̄k21/2). A spin notation is used for the qu

bit j with Pauli matrices $s j
x ,s j

y ,s j
z%, and s j

65(s j
x

6 is j
y)/2. For simplicity, we have assumed the sameEch ,

EJ1, andEJ2 for all different qubits. The tunable paramete
EJ(f j ) andb j have the same forms as those in Eqs.~4! and
~5!, wheref j is the magnetic flux pieced thej th Josephson
charge qubit. It is remarkable that the main parametersEn̄k

and EJ(f j ) in the Hamiltonian can be controlled indepe
dently for every qubit. Furthermore, Eq.~7! representing the
interaction between charge qubits and cavity QED is ess
tial in the implementation of QIP.

We now present two examples to demonstrate that
may be accomplished by using the above Josephson-junc
system. For universal QC, we need to realize only two kin
of noncommutable single-qubit gates and one nontrivial tw
qubit gate@14#.

The first example is QC using asymmetric SQUID lo
(EJ1ÞEJ2). The single-qubit gates can be realized when
qubit energy gap is far from the cavity energy, thus the qu
is decoupled from the cavity. In this case the effecti
Hamiltonian for qubitk reads@5#

Hk5En̄k
sk

z2EJ~fk!~sk
xcosbk2sk

ysinbk!. ~8!

When bothn̄k and fk are time independent, the evolutio
operator is obtained explicitly

U~gk!5expS 2
i

\E0

t

HkdtD 5exp~2 igksn•n!, ~9!

where n5„2EJ(fk)cosbk ,EJ(fk)sinbk ,En̄k
…/Ek , with Ek

5AEJ
2(fk)1En̄k

2 , gk5Ekt/\, andsn is Pauli matrix along

the directionn. We may check thatU(n1) and U(n2) are
noncommutable ifn1Þ6n2. Consequently, the universa
single-qubit gates can be realized by suitably choosingn̄k
andfk .

We now address that nontrivial two-qubit gate may
achieved by the cavity coupling. In the condition th
gAn11 is well below unity~the Lamb-Dicke limit!, we may
expand Eq.~7! in powers ofg and neglecting rapidly rotating
terms. By choosing the first blue sideband frequency (En̄k

5\n), we find a transformation
3-2
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Rk
1~uk ,bk!5expF2 i

uk

2
~ ie2 ibksk

1a1H.c.!G ,
with uk5EJ(fk)gt/\. Similarly, by choosing the first red
sideband frequency (En̄k

52\n), we have another transfor
mation

Rk
2~uk ,bk!5expF2 i

uk

2
~ ie2 ibksk

1a†1H.c.!G .
A controlled-NOT gate for control qubitj and target qubitk
can be realized by usingRk

6 and single-qubit rotations, fo
example,

U jk
CNOT5Zj@2p/~2A2!#Rj

2~p,b j !HkPk

Zk@2p/~2A2!#HkRj
2~p,b j ! ~10!

for any value of b j @15#. Here Zj (z) is a phase gate
for qubit j, Hk is the Hadamard gate, andPk

5Rk
1(2p/2,0)Rk

1(2pA2,2p/2)Rk
1(p/2,0). The gates

described by Eqs.~9! and ~10! consist of a universal set o
quantum gates using charge qubits in asymmetric SQU
loop. The requirement for fault tolerant computation is fu
filled, as j andk can be any pair of qubits.

The second example is QC using symmetric SQUID lo
(EJm5EJ0). The Hamiltonian is given byH5H01H1
1H2, where

H152
1

2 (
j

N

EJ
0~f j !~e2 ig(a1a†)s j

11H.c.!, ~11!

H25Ec(
^ i , j &

~ n̄i2ni !~ n̄ j2nj !, ~12!

with EJ
0(f j )52EJ0cos(pf/f0). HereH0 is the same as tha

of Eq. ~6!, andH2 with ^ i , j & denoting the nearest-neighbo
qubits represents the capacitive couplings between qu
@5#. We also consider this coupling because it is unlikely
work out easily a nontrivial two-qubit gate by using only th
coupling with cavity.

The single-qubit gates may be realized whenH2 is set to
zero. In the rotationed frameU0(t)5exp@2int(a†a
11/2)#exp(2iEn̄k

tsj
z), the interaction Hamiltonian is given

by Hint8 5U0
†HintU0'Ha1Hb , where

Ha52(
j

N

EJ
0~f j !s j

x ~En̄k
50!, ~13!

Hb5
1

2 (
j

N

EJ
0~f j !~ igas j

11H.c.!~En̄k
5n!. ~14!

Thus from Eq. ~13! we have a unitary operatorUx(gk
x)

5exp(2igk
xsk

x/2), with gk
x52EJ

0(fk)t/\ for the qubitk by
choosingEn̄k

50. On the other hand, it is seen from Eq.~14!

that the interaction between the cavity and qubitk is decou-
pled by choosingfk5( i k11/2)f0, with i k an integer, and
03430
D
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the evolution operator is derived asUz(gk
z)5exp(2igk

zsk
z/2)

with gk
z52En̄k

t/\. The gates described byUx(gk
x) and

Uz(gk
z) are a well-known universal set of single-qubit gate

Also by choosingfk5( i k11/2)f0, the Hamiltonian of
two qubits becomesH5En̄1

s1
z1En̄2

s2
z1Ec(n̄12n1)(n̄2

2n2). Then we find a conditional phase gate in compu
tional basis given by

U5diag~eig00,eig01,eig10,eig11!, ~15!

wheregn1n2
52vn1n2

t with \vn1n2
the eigenenergy of stat

un1n2&, it is nontrivial under the conditiong001g11Þg01
1g10 ~mod 2p). A similar gate was addressed in Refs.@5,6#.
The gatesUx(gk

x), Uz(gk
z) and Eq.~15! consist of a universa

set of quantum gates using charge qubits in symme
SQUID loop.

It is remarkable that the previously proposed geome
quantum gates@5–7,16# are still workable in the above two
examples, as the Hamiltonians are essentially in the s
forms. Thus an intrinsically fault tolerant QC is possible
the present systems. On the other hand, the scheme bas
symmetric SQUID loop has some special advantages c
pared with that using asymmetric SQUID. First, the coupli
between the cavity and charge qubits may be experimen
tunable to zero~but cannot touch zero for asymmetric cas!.
Thus the two-qubit gates may be accomplished by using
same approach as that in Refs.@5,6#. Second, the eigenstate
of the Hamiltonian may be tuned to degenerate. Then
relative phase of two logical states is zero during idle pe
ods, but the nondegenerate feature in asymmetric SQ
loop requires that the phase difference induced by the en
spacing between logical states must be controlled with h
accuracy@3#.

Another main advantage for coupling by cavities is on t
quantum communication. Since swapping gates are esse
in this direction, we now address three very useful kinds
restricted swapping gates based on the cavity QED techn
in the symmetric SQUID. Note that a slight modification
the approach can also be applicable in the nonsymme
SQUID.

If we consider a fixed qubitk and pursue the evolution o
the system followed by Eq.~14! for a certain timet, we
obtain an evolution operator

Ukp~Gkt !5exp@2 iGkt~ isk
†a1H.c.!#, ~16!

with Gk5gEJ
0(fk)/2\. This transformation keeps the sta

u0k&u0&ph unaltered, whereas

u0k&u1&ph→cos~Gkt !u0k&u1&ph1sin~Gkt !u1k&u0&ph ,

u1k&u0&ph→cos~Gkt !u1k&u0&ph2sin~Gkt !u0k&u1&ph ,

with the subscript ‘‘k’’ ~‘‘ ph’’ ! denoting thekth qubit ~pho-
ton in the cavity!. Then we have the following transforma
tion:

~au0k&1bu1k&)u0&ph→
Ukp8

u0k&~au0&ph1bu1&ph) ~17!
3-3
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between qubitk and photon in the cavity, wherea andb are
complex numbers. HereUkp8 is a short denotation o
Ukp@(2n21/2)p#, with n an integer. Gate~17! is the basis
for interconverting stationary and flying qubits. Moreov
we find that a swapping gate between qubitsk and j in the
same cavity is given by the operatorU jp8 Ukp8 , i.e.,

~au0k&1bu1k&)u0 j&u0&ph ——→
U jp8 Ukp8

u0k&~au0 j&1bu1 j&)u0&ph .

It is worth pointing out thatj andk may be any two qubits in
the same cavity, then this gate can help to realize any t
qubit gate acting on any pair of qubits as long as it can
achieved on two fixed qubits. Thus this swapping gate
very useful to overcome the drawback arising from that
two-qubit gates described by Eq.~15! act only on the neares
neighbor qubits.

Moreover, the ideal quantum transmission@12# ~swapping
gate! between two cavities 1 and 2@see Fig. 1~c!#

~au01&1bu11&)u02& ^ u01&phu02&phuvac&

→u01&~au02&1bu12&) ^ u01&phu02&phuvac&, ~18!

with uvac& the vacuum state of the free electromagne
modes connecting the cavities, can be accomplished by
propriately selecting the controllable parametersn̄i andf i in
each cavity. Following the approach described in Ref.@12#,
we find that the evolution equations to achieve the id
transmission in Eq.~18! are given by

ȧ i5gb iEJ
i /2, ḃ i52ga iEJ

i /22kb1 ~ i 51,2!, ~19!

wherek is the loss rate of each cavity,$a1 ,a2 ,b1 ,b2% are
the expansion coefficients of the wave functionuC(t)& in
the basis$u1102&u0102&ph ,u0112&u0102&ph ,u0102&u1102&ph ,
u0102&u0112&ph%, and we have chosenn̄i so thatEn̄i

5n/2.
al

.V.
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The mathematical problem is now to findf i(t) such that
a1(2`)5a2(1`)51 and Eq.~19! are fulfilled. A type of
symmetric solutions @EJ

0(f2(t))5EJ
0(f1(2t))# can be

found by the approach outlined in Ref.@12#. For example, we
find that

f15~f0 /p!arccos~k/gEJ0!,

f25~f0 /p!arccos@ke2kt/2cos~A3kt/22p/3!/ga2EJ0#,

where a25A12e2kt@11cos(A3kt2p/6)/A3#/2 (t>0),
is a set of appropriate analytical solutions. Therefore
ideal quantum transmission between two nodes of a quan
network may be accomplished using microwave photons
this system@12#.

The quantum network proposed here consists of spati
separated nodes connected by quantum communica
channels. Each node is a quantum computer using Josep
junctions, which is able to store quantum information
quantum bits and processes this information locally us
quantum gates. The transmission between the nodes o
network is accomplished using microwave photons via
cavity QED technique@17#.

To conclude, we have presented a different approach
coupling Josephson-junction qubits and have shown that
system satisfies all the acknowledged theoretical criteria
the construction of quantum-information network. Neverth
less, it is a big challenge to implement this kind of netwo
experimentally.
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