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Quantum-information processing using Josephson junctions coupled through cavities
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Josephson junctions have been shown to be a promising solid-state system for implementation of quantum
computation. The two-qubit gates are generally realized by the capacitive coupling between the nearest-
neighbor qubits. We propose an effective Hamiltonian to describe charge qubits coupled through the micro-
wave cavity. We find that nontrivial two-qubit gates may be achieved by this coupling. The ability to inter-
convert localized charge qubits and flying qubits in the proposed scheme implies that quantum network can be
constructed using this large scalable solid-state system.
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Quantum-information processif@IP) with a large num-  and show that the combination of capacitive as well as cavity
ber of qubits is now attracting increasing interest. So far, a&oupling in symmetric superconducting quantum interfer-
number of systems have been proposed as potentially viabRnce devicéSQUID) or just the cavity coupling in asymmet-
qubit models. Among a variety of qubits implemented, solid-fic SQUID allow the implementation of two-qubit gates be-
state qubits are of particular interest because of their poterfween any pair of qubits.
tial suitability for integrated devices. Charge qubits based on (i) The present scheme is able to interconvert stationary
Josephson junctions have been shown to be a promisirgharge qubits and flying photon qubits, and faithfully trans-
solid-state candidate for implementation of quantum compumit flying qubits between specified nodes in quantum net-
tation (QC) [1-8]. QIP tasks usually involve not only com- Work. The ideal quantum transmission between charge qubits
putation but also communication. However, whether Josephn different cavities can be achieved by cavity QED tech-
son junctions are also suitable for quantum communication i§iques[12]. Thus the quantum network based on solid-state
still an important open question. quantum computers may be connected by using transmission

The basic criteria for QIP have been described in Refsfibre, and photons as flying qubits in the scheme clearly rep-
[9,10]. Among them, realization of a universal set of quan-resent the best qubit carrier for fast and reliable communica-
tum gates plays a central role in QC. Besides that the gatd#n over long distances.
can act on any pair of qubits is also a necessary element for The single-Josephson-junction qubit we considered is
fault tolerant computatiofil0]. Moreover, the ability to in-  Shown in Fig. 1a) [3]. It consists of a small superconducting
terconvert stationary and flying qubits, and to faithfully box with n excess Cooper-pair charges, formed by a SQUID
transmit flying qubits between specified nodes are also rewith capacitance€;,, (m=1,2) and Josephson coupling en-
quired for quantum communicatid®)]. ergiesk;,,, pieced by a magnetic fluxp. A control gate

In this paper, we show that a new system consisting o¥oltageV, is connected to the system via a gate capacitor
Josephson junctions coupled through microwave cavities fulCq. The Hamiltonian of the system becomes
fills the above requirements, and thus is a promising candi- _
date for QIP. This system possesses at least three distinctive H=Ecy(n—n)?—Ej;€08y; — EC08y2, (1)
merits.

(i) A serious limitation of solid-state computers is that the e
decoherence time in these systems is relatively short. How-
ever, from the report in a recent experiment, it is possible
that quantum coherence of a large number qubits may be

easier to maintain if junctions locate within a high quality
microwave cavity{ 11]. ——

(i) The nontrivial two-qubit gate acting on any pair of
I i ]

qubits can be realized, and possible fault tolerant geometric
Cavity 1 Cavity 2

guantum computatiofb—7] proposed in the absent of cavity

is still workable. Thus the combination of different fault tol-
erant approaches is possible and may be helpful for over-
coming the infamous decoherence effects. Here we provide a
new experimentally feasible method to realize two-qubit
gates: coupling charge qubits through a high quality cavity,

FIG. 1. Josephson qubit systenta) A single-Josephson qubit.
(b) Josephson qubits in a cavitc) Josephson qubits in cavities
*Electronic address: zwang@hkucc.hku.hk connected by transmission fibre.
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where n is the number operator ofexcesy Cooper-pair If we have N such qubits located within a single-mode
charges on the bo¥,= 2e2/(Cg+ C;,+Cj,) isthe charg- cavity [Fig. 1(b)], to a good approximation, the total system
ing energy,n=C,V,/2 is the induced charge and can be C&n be considered atwo-state systems coupled to a quan-
controlled by changiny/,. v, is the gauge-invariant phase tum harmonic oscﬂlato[lS]._ In this case, the system consid-
difference between points on opposite sides of thtn ~ ered here can be described by the HamiltontdrH,
junction. Assuming that the Josephson junction locatest Hint, Where

within a single-mode resonant cavity, thew,=on
— (27l $o) | Am-dln, wheregp, is the phase differendef

the superconducting wave functjoacross thamth junction

in a particular gauge, and may take the same valy&3].

A, is the vector potential in the same gauge, and the line 1 N . )

integral is taken across tmath junction and along the arrows Hini=—3 > Ej(¢))(elo@ra Blof +He), (7)

in Fig. 1(a). A,, may be divided into two part&/ +A?%, J

where the first term arises from the electromagnetic field of _

the cavity normal modéwhich can be described as an oscil- With En =Ecy(nx—1/2). A spin notation is used for the qu-
lator) and the second term arises from the magnetic #ux bit j with Pauli matrices {0} ,07,0f}, and th=(0'}(

In the Coulomb gaugeA/, takes the formA/2wV(a *igY)/2. For simplicity, we have assumed the safg,

+af)e [13], wheree is the unit polarization vector of the Ej1, andE;, for all different qubits. The tunable parameters
cavity mode,V is the volume of the cavitya anda® are the  E;(¢;) andB; have the same forms as those in Egs.and
annihilation and creation operators for the quantum oscilla{5), where¢; is the magnetic flux pieced theh Josephson
tors, andw is its frequency. Therefore, we have charge qubit. It is remarkable that the main param&;rks

) ) and E;(¢;) in the Hamiltonian can be controlled indepen-

™ e dently for every qubit. Furthermore, Ey) representing the
%J,mAm'dlm_ %J'ImAﬁ-dlmﬂLg(aJraT), 2) interaction between charge qubits and cavity QED is essen-
tial in the implementation of QIP.

—9al ; ; We now present two examples to demonstrate that QC
whereg=2ee-1/\2e wV# is the coupling constant between ) ; . .
the junctions and the cavity, withthe thickness of the insu- May be accomplished by using the above Josephson-junction

lating layer in the junction. For simplicity, we assume thatSyStem. For universal QC, we need to realize only two kinds
gn=g. As for A%, we have another constrainfcA%dl of noncommutable single-qubit gates and one nontrivial two-

= - ; . . qubit gate[14].
Fiéﬁ,l\(/;?ere the integral patlt is along the dashed fine in The first example is QC using asymmetric SQUID loop

We consider systems in the charging regime whegg (EJl.iEJZ)' The §ingle-qubit gates can be realized when a
>E;,, then a convenient basis is formed by the chargequIt energy gap is far from t_he cavity energy, thus the ng't
states, parametrized by the number of Cooper paos the IS de_cou_pled from _the cavity. In this case the effective
box, ande is its conjugaten= —i#d/ (). They satisfy the Hamiltonian for qubitk reads{5]

standard commutation relatiod:¢,n]=i. In this basis
Hamiltonian(1) reads

N
Ho=fiv +2 Enof, (6)
]

1
T+_
a'a 2

Hy= En, o%— Es( i) (0cosx— aisin By). ®

— Es(¢)  _, t When bothn, and ¢, are time independent, the evolution
— _ 2 _ - !
H_; Ecn(n—n)*n)(n|— —5—(e otera Alin+1) operator is obtained explicitly
i [t
x(n|+H.c)|, 3 U(yk)=exp< —%fondt) =exp —iywo,-n), (9
where where n=(—E;(¢y)cosBE(hdsin B, En)/E, with Ey
Ej —Ep [md = w/E§(¢k)+E% . v«=E\t/#, ando,, is Pauli matrix along
tanf=———— r(—) @ the directionn. \ heck th d
E;n+Ejp oo the directionn. We may check that(n;) andU(n,) are

noncommutable ifn; # £ n,. Consequently, the universal
E;(¢)=V(Ej;— Ejp)°+4E EjpcoS(mdl do),  (5) single-qubit gates can be realized by suitably choosipg
and ¢, .
with ¢o=mhl/e being the flux quantum. At temperature =~ We now address that nontrivial two-qubit gate may be
much lower than the charging energy and the gate voItagéChlevef_i by the cavity coupling. In the_ cpndltlon that
tuning close to a degeneracg1/2), the relevant physics 9vn+1 is well below unity(the Lamb-Dicke limi}, we may
is captured by considering only the two charge eigenstate@XPand Eq(7) in powers ofg and neglecting rapidly rotating
n=0,1, which constitute the basj$0),|1)} of the computa- t€rms. By choosing the first blue sideband frequeniy (
tion Hilbert space of the qubit. =#hv), we find a transformation
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the evolution operator is derived &k, v;) = exp(—iyioi/2)
' with y§=2E;kt/h. The gates described by,(yx) and

U,(ys) are a well-known universal set of single-qubit gates.
Also by choosingg,= (i + 1/2)¢o, the Hamiltonian of

two qubits becomesH =Ey, o+ Ey a5+ Eo(n;—ny)(n;
—n,). Then we find a conditional phase gate in computa-
tional basis given by

0 .
R;(ak,ﬂk)=exp{ —i f(ie"ﬁka;m— H.c)

with 6,=E;(¢)gt/A. Similarly, by choosing the first red
sideband frequenC)E(nj(: —#hv), we have another transfor-

mation

_ O e
Ry (6, B =exg —i - (ie "Prgfa’+H.c) o
2 U = diage' 700, 701, @i 710 ¢! 711) (15)
A controlledNoOT gate for control qubij and target qubik

! or L . ) : wherey, .= —w,.,.t with Zw, . the eigenenergy of state
can be realized by using, and single-qubit rotations, for 12 12 L2

[nin,), it is nontrivial under the conditionyge+ y117# vo1

example, + y10 (Mod 277). A similar gate was addressed in R€5,6].
UjCII(NOT: Z[- w/(Zﬁ)]Rf(w,Bj)HkPk The gatedJ,(vx), U(v§) ang Eq.(15 consist'of a universal .
set of quantum gates using charge qubits in symmetric
2~ ml(2\2)IHR; (7,8) (10 SQUID loop.

It is remarkable that the previously proposed geometric
for any value of 8; [15]. Here Z;({) is a phase gate quantum gate§5-7,16 are still workable in the above two
for qubit j, H, is the Hadamard gate, and®, examples, as the Hamiltonians are essentially in the same
=R; (—@/2,0)R} (— m\2,— #l2)R} (=/2,0). The gates forms. Thus an intrinsically fault tolerant QC is possible in
described by Eqg9) and (10) consist of a universal set of the present systems. On the other hand, the scheme based on
quantum gates using charge qubits in asymmetric SQUIBYmMmetric SQUID loop has some special advantages com-
loop. The requirement for fault tolerant computation is ful- pared with that using asymmetric SQUID. First, the coupling
filled, asj andk can be any pair of qubits. between the cavity and charge qubits may be experimentally

The second example is QC using symmetric SQUID looptunable to zerdgbut cannot touch zero for asymmetric case
(E;m=Eyo). The Hamiltonian is given byH=H,+H; Thus the two-qubit gates may be accomplished by using the
+H,, where same approach as that in R€f5,6]. Second, the eigenstates

of the Hamiltonian may be tuned to degenerate. Then the
1 0 igatal) + relative phase of two logical states is zero during idle peri-
Hi=—3 > EY(¢j(e o/ +H.c), (1)  ods, but the nondegenerate feature in asymmetric SQUID
J loop requires that the phase difference induced by the energy
spacing between logical states must be controlled with high
Hp=Ec 2 (ni—m)(nj—ny), (12 accuracy3].
() Another main advantage for coupling by cavities is on the
_ 0 _ quantum communication. Since swapping gates are essential
with E;(¢j) =2E j0c08(me o). HereHy is the same as that i this direction, we now address three very useful kinds of
of Eq. (6), andH, with (i,j) denoting the nearest-neighbor restricted swapping gates based on the cavity QED technique
qubits represents the capacitive couplings between qubiif the symmetric SQUID. Note that a slight modification of
[5]. We also consider this coupling because it is unlikely tothe approach can also be applicable in the nonsymmetric
work out easily a nontrivial two-qubit gate by using only the sQuD.
coupling with cavity. If we consider a fixed qubit and pursue the evolution of

The single-qubit gates may be realized whesis setto  the system followed by Eq(14) for a certain timet, we
zero. In the rotationed frameUqy(t)=exgd—irt(@a  optain an evolution operator

+1/2)]exp(—iE;ktof), the interaction Hamiltonian is given

N

_ A,
by H/,,=U{H . Uo~H.+Hy, where Upp(I'kt) =exd —ilt(ioa+H.c)l, (16)
N with Fk=gEg(¢k)/2h. This transformation keeps the state
Ha=—2> ES(¢))o] (En,=0), (13)  |0)|0),h unaltered, whereas
j
" 04| 1) pr— oS T't) [0k} | 1) pn+ SIN(T 1) | 11} [O)
1
_ 0 ; __ .
Hy=3 2 EX(¢))(igac +He)(Eq=0). (19 |11010)p— oS T'kt)| L[ 0) pn— SN[ 0| 1) i,

: with the subscript k” (“ ph”) denoting thekth qubit (pho-
Thus frgm Eq.(13? we have a unitary operatdqx(yﬁ) ton in the cavityF.) Theg \E)ve k)1ave the gflollowingqtrangf)orma-
=exp(iyol2), with yi=2E(#)t/A for the qubitk by tion:

choosingE;kZO. On the other hand, it is seen from Eij4)

that the interaction between the cavity and quis decou- Ukp

pled by choosingp,= (i + 1/2)¢,, with i, an integer, and (a|0)+ B[1))[0) ph— [0 (a|0) pp+ B|L)pn)  (17)
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between qubik and photon in the cavity, wherwe andB are  The mathematical problem is now to fing(t) such that
complex numbers. HereiJlQp is a short denotation of aqi(—®)=a,(+*)=1 and Eq.(19) are fulfilled. A type of
Uyl (2n—1/2)7], with n an integer. Gatél7) is the basis symmetric solutions[EJ(¢»(t)) =EJ(¢1(—t))] can be
for interconverting stationary and flying qubits. Moreover, found by the approach outlined in Rgt2]. For example, we
we find that a swapping gate between qukitandj in the  find that
same cavity is given by the operatUrj’pU&p, ie.,
U $1=(¢o/m)arccogx/gEy),

ip~kp
(|0 + B]11))[0;)]0) ph — [0k ([ 0;) + B[1;))[0) .-

It is worth pointing out thaf andk may be any two qubits in
the same cavity, then this gate can help to realize any two- \/ T
qubit gate acting on any pair of qubits as long as it can bévhere a;=V1-e _[1+C°S(\/_§Kt_7/6),/‘/§]/2 (t=0),
achieved on two fixed qubits. Thus this swapping gate idS @ Set of appropriate _analytlcal solutions. Therefore the
very useful to overcome the drawback arising from that thdd€al quantum transmission between two nodes of a quantum
two-qubit gates described by E@.5) act only on the nearest network may be accomplished using microwave photons in

bo= (ol m)arccofxe 2cog \3xt/2— w3)Iga,E ],

neighbor qubits. this systen{12]. . .
Moreover, the ideal quantum transmiss[d:2] (swapping The quantum network proposed here consists of spatially
gate between two cavities 1 and [2ee Fig. ()] separated nodes connected by quantum communication
channels. Each node is a quantum computer using Josephson
(a|01)+ B[11))]02)®|01) pp| 02) phl VA junctions, which is able to store quantum information in

quantum bits and processes this information locally using
—[0:)(a|02) +B[12))@|01)pnl02)pnlvad,  (18)  guantum gates. The transmission between the nodes of the

. . network is accomplished using microwave photons via the
with |vag the vacuum state of the free electromagnetlccavity QED techniqué17].

modes connecting the cavities, can be accoanIished by ap- To conclude, we have presented a different approach to

propriately selecting the controllable parametgrand¢; in - ¢qypling Josephson-junction qubits and have shown that this
each cavity. Following the approach described in Re2],  system satisfies all the acknowledged theoretical criteria for
we find that the evolution equations to achieve the ideajne construction of quantum-information network. Neverthe-
transmission in Eq(18) are given by less, it is a big challenge to implement this kind of network

- i . i . experimentally.
ai=9BiEy2, Bi=—gaEy2-kpy (i=12), (19

) ) This work was supported by the RGC grant of Hong
where« is the loss rate of each cavitr;,az,81.82F are Kong under Grant No. HKU7114/02P and a URC fund of
the expansion coefficients of the wave functiphi(t)) in  HKU. S.L.Z was supported in part by SRF for ROCS, SEM,
the basis{|1,0,)|0102)pn,[0112)[0102)pn,[0102)[1102)pn,  the NSF of Guangdong under Grant No. 021088, and the
1010,)|0115)pn}, and we have chosem so thatE, =»/2.  NNSF of China under Grant No. 10204008.

[1] A. Shnirman, G. Schg and Z. Hermon, Phys. Rev. Left9, Averin, and J.S. Tsai, Naturg.ondon 421, 823(2003.
2371(1997. [9] D.P. Divincenzo, Fortschr. Phy48, 771 (2000.

[2] D.V. Averin, Solid State CommuriL05, 659 (1998. [10] J. Preskill, Proc. R. Soc. London, Ser4A4, 385(1998.

[3] Y. Makhlin, G. Schm, and A. Shnirman, Naturg.ondon 398 [11] P. Barbara, A.B. Cawthorne, S.V. Shitov, and C.J. Lobb, Phys.
305(1999; Rev. Mod. Phys73, 357 (2002). Rev. Lett.82, 1963(1999.

[4] Y. Nakamura, Yu.A. Pashkin, and J.S. Tsai, Nat(lrendon [12] J.I. Cirac, P. Zoller, H.J. Kimble, and H. Mabuchi, Phys. Rev.
398, 786(1999. Lett. 78, 3221(1997).

[5] G. Falci, R. Fazio, G.M. Palma, J. Siewert, and V. Vedral,[13] W.A. Al-Saidi and D. Stroud, Phys. Rev. &%, 224512(2002.
Nature(London 407, 355(2000. [14] S. Lloyd, Phys. Rev. Let{75, 346(1995.

[6] S.L. Zhu and Z.D. Wang, Phys. Rev. Le89, 097902(2002); [15] A.M. Childs and I.L. Chuang, Phys. Rev.68, 012306(2000.
89, 289901E) (2002; Phys. Rev. A66, 042322(2002. [16] S.L. Zhu and Z.D. Wang, Phys. Rev.6¥, 022319(2003.

[7] X.B. Wang and M. Keiji, Phys. Rev. B5, 172508(2002. [17] G.P. He, S.L. Zhu, Z.D. Wang, and H.Z. Li, Phys. Rev68

[8] Yu.A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D.V. 012315(2003.

034303-4



