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PHYSICAL REVIEW B, VOLUME 65, 153311
Quantization of adiabatic pumped charge in the presence of superconducting lead

Jian Wang and Baigeng Wang
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

~Received 19 October 2001; published 3 April 2002!

We investigate the parametric electron pumping of a double barrier structure in the presence of a supercon-
ducting lead. The parametric pumping is facilitated by cyclic variation of the barrier heightsx1 andx2 of the
barriers. In the weak-coupling regime, there exists a resonance line in the parameter space (x1 ,x2) so that the
energy of the quasibound state is in line with the incoming Fermi energy. Levinsonet al. found recently that
the pumped charge for each pumping cycle is quantized withQ52e for normal structure when the pumping
contour encircles the resonance line. In the presence of a superconducting lead, we find that the pumped charge
is quantized with the value 2e.
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Physics of parametric electron pump has attracted g
attention recently.1–12 A classical example of electron pum
is the Thouless pump facilitated by a traveling wa
potential.13 The pumped charge is quantized13 and can be
used as a quantum standard for electric charge.14 The quan-
tization of pumped charge has also been studied for a la
almost open quantum dot15,16 and a small, strongly pinche
quantum dot.17 In the latter case, there exists a resonance
along which the transmission through the quantum dot is
resonance. The pumped charge is quantized if the pum
contour in parameter space is properly chosen to encircle
resonance line.17 Recently, we have studied the paramet
pumping in presence of a superconducting lead.18 At the
normal-conductor–superconductor~NS! interface, an incom-
ing electronlike excitation can be Andreev reflected as
holelike excitation.19 In contrast to the current doublin
effect,20 we found that due to the quantum interference
direct reflection and the multiple Andreev reflection, t
pumped current is four times of the value when the leads
normal in theweak pumping regime. In this paper, we ex-
plore the effect of superconducting lead on electron pump
in the opposite limit, i.e., we study the pumped charge dur
the pumping cycle in the the strong pumping regime. H
the pumped charge is equal to the pumped current multip
by the period of pumping cycle. Similar to the Ref. 17, w
examine the behavior of pumped charge near the reson
line. We find that the pumped charge in one pumping cycl
quantized with the value ofQ52e when one of the leads i
superconducting.21

We consider a parametric pump, which consists o
double barrier tunneling structure attached to a normal
lead and a superconducting right lead. Due to the cy
variation of external parametersx1 and x2, the adiabatic
charge transfer in the presence of a superconducting
is1,22,23

QNS52eE
0

t

dtFdNL

dx1

dx1

dt
1

dNL

dx2

dx2

dt G , ~1!

where t is the period of cyclic variation and the quanti
dNL /dx is the injectivity25,26 given, at zero temperature, b
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dNL

dxj
5

1

2p
ImFSee*

]See

]xj
2She*

]She

]xj
G , ~2!

where the first term is the injectivity of the electron due
the variation of the external parameter,25,26 i.e., the partial
density of states for an electron coming from the left le
and exiting the system as an electron, and the second ter
the injectivity of a hole, i.e., the DOS for a hole coming fro
the left lead and exiting the system as an electron. Using
Green’s theorem, the pumped charge can be expresse
surface integral over areaA enclosed by the path
„x1(t),x2(t)… in the parameter space1

QNS5
2e

p E
A
dx1dx2PNS~x1 ,x2! ~3!

with

PNS~x1 ,x2!5ImF]See*

]x1

]See

]x2
2

]She*

]x1

]She

]x2
G . ~4!

Note that the areaA is a measure of variation of pumpin
parametersx1 andx2 . A is very small in the weak pumping
limit while it remains finite in the strong pumping regime.

For the NS structures, the scattering matrix is describ
by 232 matrix Ŝ when the Fermi energy is within the su
perconducting gapD

Ŝ5S See Seh

She Shh
D , ~5!

whereSee ~or She) is the scattering amplitude of the incide
electron reflected as an electron~or a hole!. Using Andreev
approximation,19 we have20,27

Ŝ5Ŝ111Ŝ12~12R̂I Ŝ22!
21R̂I Ŝ21, ~6!

whereŜbg(E) (b,g51,2) is a diagonal 232 scattering ma-
trix for the double barrier structure with matrix eleme
Sbg(E) andSbg* (2E). For instance, we have

Ŝ115S S11~E! 0

0 S11* ~2E!
D . ~7!
©2002 The American Physical Society11-1
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BRIEF REPORTS PHYSICAL REVIEW B 65 153311
In Eq. ~6! R̂I5asx is the 232 scattering matrix at NS in
terface due to the Andreev reflection with off-diagonal m
trix element a. Here a5(E2 inAD22E2)/D with n51
when E.2D and n521 when E,2D. In Eq. ~6!, the
energyE is measured relative to the chemical potentialm of
the superconducting lead. Equation~6! has a clear physica
meaning.27 The first term is the direct reflection from th
normal scattering structure and the second term can be
panded asŜ12R̂I Ŝ211Ŝ12R̂I Ŝ22R̂I Ŝ211•••, which is clearly
the sum of the multiple Andreev reflection in the hybr
structure. It is the quantum interference of these two te
which gives rise the enhancement of pumped current in
weak pumping regime for NS system.18 From Eq. ~6! we
obtain the well-known expressions for the scattering ma
See andShe ~Ref. 20!

See~E!5S11~E!1a2S12~E!S22* ~2E!MeS21~E!, ~8!

She~E!5aS12* ~2E!MeS21~E!, ~9!

and

Me5@12a2S22~E!S22* ~2E!#21. ~10!

The double barrier structure, which we consider, is mode
by potentialU(y)5V1d(y1a/2)1V2d(y2a/2), whereV1
and V2 are barrier heights that vary in a cyclic fashion
allow the charge pumping. For this system the retard
Green’s functionGr(y,y8) can be calculated exactly.30 This
is done by applying the Dyson’s equation regarding the f
that any one of thed barrier is just a perturbation of th
remaining system. This wayGr(y,y8) is obtained by apply-
ing Dyson’s equation twice starting from the Green’s fun
tion of the one-dimensional free space. WithGr(y,y8) we
can calculate scattering matrix exactly from the Fisher-L
relation28

Sbg52dbg1 ivGbg
r , ~11!

whereGbg
r 5Gr(yb ,yg) and v52k is the electron velocity

in the normal lead. For normal structure, we have17

S115@12 ix22~11 ix1!s2#/D, ~12!

S225@12 ix12~11 ix2!s2#/D, ~13!

and

S125S215x1x2s/D, ~14!

where D52(12 ix1)(12 ix2)1s2, x1,252kV1,2, and s
5exp(ika). For the double barrier structure, the resonant t
neling is mediated by the quasibound state. When the en
of the incident electron is in line with the energy of th
quasibound state the transmission coefficient reaches
maximum. The energy of quasibound states can be de
mined either by looking at the pole of the scattering matrix17

which works well in one dimension, or by calculating th
dwell time of the incident electron for two- or three
dimensional systems.29 In the case of doubled barriers struc-
ture, the energy of quasibound state is given by17 E5Er

1DE with DE52(kr /a)(x11x2), where Er5kr
2
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5(np/a)2 is the energy of the bound state when the system
isolated. This defines a resonance linex11x252d in pa-
rameter space (x1 ,x2) along which the transmission is a
resonance.17 Hered,0 is the detuning of the Fermi energ
from the bound state.

To show the quantization of charge transfer in the N
system, it is useful to recall the calculation of the norm
case and make the comparison. In the normal case the ch
transfer is given by1,21

QN5
2e

p E
A
dx1dx2PN~x1 ,x2!, ~15!

PN~x1 ,x2!5ImF]S11*

]x1

]S11

]x2
1

]S12*

]x1

]S12

]x2
G . ~16!

The pumped charge in this case has been calculated in
17. In theweak pumping limit, it is easy to show that only
]xS11 contributes to the pumped charge. In the strong pum
ing regime, we will show in the following that the contribu
tion from ]xS12 to the pumped charge in normal structure
zero. As discussed in detail in Ref. 17, we neglect the smo
energy dependence ofx1 and x2. From Eq.~16!, we obtain
the contribution due to]xS12

P1
N~x1 ,x2!5F1~x1 ,x2!/F2

2~x1 ,x2! ~17!

with

F1~x1 ,x2!522x1x2~x12x2!sin2~d/2!, ~18!

F2~x1 ,x2!5x1
2x2

21~x11x2!212~x11x2!sind

12~12x1x2!~12cosd!. ~19!

To compute the surface integral ofP1
N in Eq. ~17!, it is

convenient to change the variables fromx1,2 to p andz,

x152pd~11z!/2 ~20!

and

x252pd~12z!/2 ~21!

with 0,p,` and 21,z,1. Substituting Eqs.~20! and
~21! into Eqs. ~18! and ~19! and expanding Eqs.~18! and
~19! in terms of smalld, we have

F15z~12z2!d5p3/8 ~22!

F25d2@~12p!21d2g~p,z!# ~23!

whereg(p,z) @an even function ofz# is given in Eq.~8! of
Ref. 17. SinceF1 is an odd function ofz, the contribution
due to]xS12 to the pumped charge is zero.

Now we follow the same procedure to calculate t
pumped charge for the NS system. For the parametric pu
ing at zero temperature, we only need the scattering matr
the Fermi level, i.e., atE50. From Eqs.~9! and~10!, we see
1-2
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FIG. 1. ~a!. The integrandP of Eqs. ~3! and
~15! as a function ofx1 and x2 for d520.2.
For illustration, the origin ofPN(x1 ,x2) has
been shifted by (0.1,0.1).~b!. The cross section
of P along the resonance linex11x252d.
Solid line,PNS; dotted line,PN. Insets show the
cross section ofP along the directionx12x2

5c0, which is perpendicular to the resonanc
line. Left inset, c050.01; right inset, c0

520.042.
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thatShe is a real quantity and hence makes no contribution
the pumped charge in Eq.~3!. It is straightforward to calcu-
late PNS using Eq. ~8!, from which we obtain,
PNS(x1 ,x2)5F3(x1 , x2)/F4

3(x1 ,x2), where F354x1
4x2

3(2
22 cosd1x2sind) and F45x1

2x2
212(x11x2)214(x1

1x2)sind14(12x1x2)(12cosd).
In Fig. 1 we plot bothPNS andPN as well as their cross

sections along and perpendicular to the resonance line.
see thatPNS andPN are peaked around the resonance li
Two features are worth noticing. First of all, the peak ofPNS

is much sharper than that ofPN. This is understandable an
is due to the resonance nature of NS structures near the
nance line. In the Breit-Wigner form, the transmission co
ficients for normal and NS structures are, respectiv
uS21u25G1G2 /@(E2Er)

21G2/4# and ~see Ref. 20! uS heu2

54G1
2G2

2/@4(E2Er)
21G1

21G2
2#2, whereEr is the resonant

level, G1 andG2 are the decay widths into the left and rig
leads. HenceuS heu2 decays much faster away fromEr than
uS21u2. The scattering matrixS21 andShe will appear, respec-
tively, in Eqs. ~3! and ~15! implicitly as can be seen from
Fisher-Lee relation Eq.~11! and the Dyson equation]X2

G11
r

5G12
r G21

r .31 Second, the peak height ofPNS is four times
larger than that ofPN. This is precisely due to the constru
tive interference of direct reflection and multiple Andre
reflection.18 Now the physics of pumping at resonance
clear. For the resonance pumping in the weak pumping
gime, we are looking at the small neighborhood of the pe
The area of the neighborhood has to be small since it is
weak pumping. The neighborhood has to be around the p
with x1;x2, since only around the peak the transmiss
coefficient is approximately 1. As a result, we obtain imm
diately that the pumped charge or pumped current of the
structure near the resonance is four times that of the co
15331
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sponding normal structure. In the other extreme, for stro
pumping, we take a large contour enclosing entire resona
line. SincePNS decreases much faster thanPN away from
the peak, it is understandable that the pumped charges~the
integral ofP over the area enclosed by the contour! for both
normal and NS structures are equal, which will be sho
analytically below.

After the expansion in powers ofd in Eqs.~18! and ~19!
and keeping the leading orders ofd, we have

F35p7@21p~211z!#~211z!3~11z!4
d9

64
, ~24!

F452~12p!2d21F2
1

6
1

2p

3
1

1

2
p2~211z2!

1
1

16
p4~211z2!2Gd4. ~25!

So Eq.~3! becomes

QNS5
e

pE0

`

pdpE
21

1

dz
F3

F4
3
d2, ~26!

using the fact that limd2.0d5/(x21d2)35(3/8)pd(x), Eq.
~26! becomes

QNS53A2eE
21

1

dz
~12z2!3~11z!2

~116z21z4!5/2
52e. ~27!

Hence the pumped charge for NS system is quantized a
same value as that of the normal structure.

Now we have a better physical picture for the transp
properties of the NS structure. For the conductance or
1-3
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I -V curve, we needS21 or She . For normal structure, the
current is given by I N52e/h*dE@ f (E2eV1)2 f (E
2eV2)#uS12u2 and hence at resonance and at zero temp
ture GN5I N/(V12V2)52e2/h. For NS structure, we
have20,32 I NS52e/h*dE@ f (E2eV1)2 f (E1eV1)#uS heu2

and at resonanceGNS5I NS/V154e2/h, which is the well-
known doubling of the conductance. For pumped charge
pumped current at resonance, however, it depends only
]xi

S11 or ]xi
See (E50 is assumed!. Due to the constructive

interference between direct reflection and multiple Andre
reflection in theweak pumping regime, the charge transfe
increases by a factor of 4 when one of the leads beco
superconducting. In the strong pumping regime, howe
the charge transfer is quantized at the value equal to tha
normal structure, if the pumping contour is chosen such
the resonance line is enclosed. The physics behind this
be understood as follows. In the normal case, the con
enclosing the resonance line in the parameter space pa
through the resonance line at two points (x1 ,x2)5(0,2d)
when the left contact is almost closed and (2d,0) when the
right contact is almost closed. When passing through th
two points, the resonance level of the dot crosses the Fe
energy. At each crossing, the occupation of the level chan
and two electrons with opposite spins enter or exit the reg
between the barriers. Since one of the tunnel barriers
zero conductance at these points, it is clear that the elect
must have tunneled through the other contact upon ente
15331
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or leaving the quantum dot. Hence, in the pumping cyc
electrons are shuttled pairwise through the dot. In the p
ence of the superconducting lead, the resonance level~both
the energy and the width! is exactly the same as that o
normal case since the scattering matrix is given byShe

5 i uS12u2/(11uS22u2) whenE50. Therefore, the same argu
ment applies to the superconducting case and the quan
tion unit is 2e. Note that our statement is only valid when th
electron interaction is neglected. For the case of two norm
metal contacts, if interactions are included the quantizat
will remain, but now the quantum is onlye: Only one elec-
tron at a time can enter the region between the barriers;
dition of a second electron is forbidden by the Coulom
blockade. In the presence of the superconducting lead, s
the Andreev reflection requires two electrons with oppos
spins in order to produce the supercurrent, it seems that
pumping is not allowed in the strong pumping regime due
the Coulomb blockade. In this paper, we have also negle
effects of the temperature and inelastic scattering. As
cussed in Ref. 17 the temperature will destroy the quant
tion of the pumped charge. When inelastic channel is pres
an additional physical mechanism for an incoherent pu
effect will show up.33
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