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Quantization of adiabatic pumped charge in the presence of superconducting lead
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(Received 19 October 2001; published 3 April 202

We investigate the parametric electron pumping of a double barrier structure in the presence of a supercon-
ducting lead. The parametric pumping is facilitated by cyclic variation of the barrier heiglaisdx, of the
barriers. In the weak-coupling regime, there exists a resonance line in the parameteixgpagesp that the
energy of the quasibound state is in line with the incoming Fermi energy. Levitsainfound recently that
the pumped charge for each pumping cycle is quantized @it2e for normal structure when the pumping
contour encircles the resonance line. In the presence of a superconducting lead, we find that the pumped charge
is quantized with the valuee

DOI: 10.1103/PhysRevB.65.153311 PACS nuni®er73.23.Ad, 73.40.Gk, 72.10.Bg, 74.54.
Physics of parametric electron pump has attracted great dN, 1 9S00 9She
attention recently- 12 A classical example of electron pump o =5ImM Sge— —She—— | 2
dxi 2w X IX;

is the Thouless pump facilitated by a traveling wave J
potential®®> The pumped charge is quanti?édaind can be where the first term is the injectivity of the electron due to
used as a quantum standard for electric chatdéhe quan- the variation of the external parametef®i.e., the partial
tization of pumped charge has also been studied for a largelensity of states for an electron coming from the left lead
almost open quantum ddt*® and a small, strongly pinched and exiting the system as an electron, and the second term is
quantum dot’ In the latter case, there exists a resonance linghe injectivity of a hole, i.e., the DOS for a hole coming from
along which the transmission through the quantum dot is athe left lead and exiting the system as an electron. Using the
resonance. The pumped charge is quantized if the pumpin@reen’s theorem, the pumped charge can be expressed as
contour in parameter space is properly chosen to encircle thgurface integral over areaA enclosed by the path
resonance liné’ Recently, we have studied the parametric(x,(t),X,(t)) in the parameter spate
pumping in presence of a superconducting [Eadt the )
normal-conductor—superconduct{®\S) interface, an incom- e
ing electronlike excitation can be Andreev reflected as a QNSI?fAdxldX2HNS(X1’X2) ©)
holelike excitationt? In contrast to the current doubling
effect?® we found that due to the quantum interference ofwith
direct reflection and the multiple Andreev reflection, the
pumped current is four times of the value when the leads are
normal in theweak pumping regimdn this paper, we ex-
plore the effect of superconducting lead on electron pumpin , L ,
in the opposite limit, i.e., we study the pumped charge during\‘c’te that the area is a measure of_var|at|on of pumping
the pumping cycle in the the strong pumping regime. Herd?@rameters, andx,. A is very small in the weak pumping
the pumped charge is equal to the pumped current multiplieiMit while it remains finite in the strong pumping regime.
by the period of pumping cycle. Similar to the Ref. 17, we For the NS sAtructures, the scattering matrix is described
examine the behavior of pumped charge near the resonanb¥ 2X2 matrix S when the Fermi energy is within the su-
line. We find that the pumped charge in one pumping cycle igerconducting gap
guantized with the value d@=2e when one of the leads is
superconducting' 3 See  Sen
We consider a parametric pump, which consists of a 1 She Shn/’
double barrier tunneling structure attached to a normal left ) ) ) o
lead and a superconducting right lead. Due to the cycli?VhereSec (0r She) is the scattering amplitude of the incident
variation of external parameters, and x,, the adiabatic electron reflected as an electr@r a holg. Using Andreev

aSge‘?See (98;6 ’?She
IXy Xy IXy Xy |

ITNS(x, %) =1m

4

(5

P H 9 0,2
charge transfer in the presence of a superconducting lec@pproximatior’,’ we havé®?’
11,22,23
isTee A a .. ..
S=S;1+S(1-R S») 'R Sy, (6)
whereS (E) (B,y=1,2) is a diagonal &2 scattering ma-
T By
NS—2e | dt ﬂ%Jrﬂ% 1 trix for the double barrier structure with matrix element
Q : ()
o |dx; dt dx, dt

Sg,(E) and S’,,;y(— E). For instance, we have

where 7 is the period of cyclic variation and the quantity
dN, /dx is the injectivit>2® given, at zero temperature, by

. Siu(E) O
11~ (7

o L(—E))'
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In Eq. (6) R =y is the 2<2 scattering matrix at NS in- =(nm/a)” is the energy of the bound state when the system is
terface due to the Andreev reflection with off-diagonal ma-isolated. This defines a resonance lixetx,=— 45 in pa-

trix element a. Here a=(E—ivJAZ—E?)/A with y=1  rameter spacexg,x,) along which the transmission is at
when E>—A and v=—1 whenE<—A. In Eq. (6), the resonancé’ Here §<0 is the detuning of the Fermi energy
energyE is measured relative to the chemical potentiabf ~ from the bound state. _

the superconducting lead. Equati¢8) has a clear physical ~ 10 show the quantization of charge transfer in the NS
meaning®’ The first term is the direct reflection from the System, it is useful to recall the calculation of the normal
normal scattering structure and the second term can be e£ase and make the comparison. In the normal case the charge
panded asS R 5,1+ SR SR Syrt - - -, which is clearly ~ ansferis given by?

the sum of the multiple Andreev reflection in the hybrid 5

structure. It is the quantum interference of these two terms QN=—eJ dx;dxITN(X4,Xy), (15)

which gives rise the enhancement of pumped current in the mJA

weak pumping regime for NS systethFrom Eq.(6) we
obtain the well-known expressions for the scattering matrix

38y, 0S8y, 9ST, IS
See @aNd Sy (Ref. 20 TIN(Xq ,%p) =Im 11 %211 12 0912

Xy Xy IXqy Xy |

(16)

_ 2 *
SedE)=S(E) + a*SiE)S;( —E)MSp(E),  (8) 10 pumped charge in this case has been calculated in Ref.
17. In theweak pumping limjtit is easy to show that only

— 3
ShelB) = aSiA~ E)MeSy(E), ©) xSy, contributes to the pumped charge. In the strong pump-
and ing regime, we will show in the following that the contribu-
tion from 4,S;5 to the pumped charge in normal structure is
Me=[1-a’Sy,(E)S5,(—E)] . (100 zero. As discussed in detail in Ref. 17, we neglect the smooth

gnergy dependence af andx,. From Eq.(16), we obtain

The double barrier structure, which we consider, is modele N
the contribution due t@,S;,

by potentialU(y)=V,86(y+al2)+V,5(y—al2), whereV;
andV, are barrier heights that vary in a cyclic fashion to N 9
allow the charge pumping. For this system the retarded I3 (X1,X2) = F1(X1,X2)/ Fa(Xy ,%2) (17
Green’s functionG'(y,y’) can be calculated exactl{.This ith

is done by applying the Dyson’s equation regarding the fac¥v

that any one of theS barrier is just a perturbation of the _ _ .

remaining system. This wa@'(y,y’) is obtained by apply- F1(X1,Xp) = = 2X1Xp(X1— Xp) SINA(812), (18)
ing Dyson’s equation twice starting from the Green’s func-
tion of the one-dimensional free space. Wii(y,y’) we
can C?I?%ulate scattering matrix exactly from the Fisher-Lee +2(1—XX,)(1—C0S5). (19
relatio

Fo(X1,X2) =X2X3+ (X1 +Xp) 2+ 2(X1 + X5)SiN &

To compute the surface integral ®} in Eq. (17), it is

— H r
Spy= Oy T1vGpy, (1D convenient to change the variables frony to p andz,
whereG;;,y:Gr(yﬁ,yy) andv =2k is the electron velocity
in the normal lead. For normal structure, we hdve X1=—pd(1+2)/2 (20
Sy =[1—iX,—(1+ix;)a?]/D, (12 and
Sy=[1—ix;—(1+ix,)c?]/D, (13 X,=—p&(1—2)/2 (21)
and with 0<p<w and —1<z<1. Substituting Eqs(20) and

(21) into Egs.(18) and (19 and expanding Eq¥18) and

S12= S =X1X0/D, (14 (19) in terms of small§, we have
where D= —(1—ix;)(1—ix,)+ 0%, X;,=2kV;,, and o
=exp(ka). For the double barrier structure, the resonant tun- F,=2(1-2%)6°p%8 (22)
neling is mediated by the quasibound state. When the energy
of the incident electron is in line with the energy of the F,=087(1—p)%+ 8%°g(p,2)] (23)

guasibound state the transmission coefficient reaches its

maximum. The energy of quasibound states can be detewhereg(p,z) [an even function of] is given in Eq.(8) of
mined either by looking at the pole of the scattering malfix, Ref. 17. SinceF; is an odd function of, the contribution
which works well in one dimension, or by calculating the due t04,S;, to the pumped charge is zero.

dwell time of the incident electron for two- or three- Now we follow the same procedure to calculate the
dimensional systenfs.In the case of doublé barriers struc-  pumped charge for the NS system. For the parametric pump-
ture, the energy of quasibound state is givert’Hg=E, ing at zero temperature, we only need the scattering matrix at
+AE with AE=—(k//a)(x;+x,), where E,=k? the Fermilevel, i.e., d=0. From Eqs(9) and(10), we see
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FIG. 1. (8. The integrandl of Egs.(3) and
(15 as a function ofx; and x, for 6=—0.2.
For illustration, the origin of IIN(x;,x,) has
been shifted by (0.1,0.1)b). The cross section
of II along the resonance ling;+x,=—4.
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thatS;,. is a real quantity and hence makes no contribution tesponding normal structure. In the other extreme, for strong

the pumped charge in E¢J). It is straightforward to calcu- Ppumping, we take a large contour enclosing entire resonance

late TINS using Eq. (8), from which we obtain, line. SincelIN®S decreases much faster thai!' away from

TINS(X 4 ,%,) =F3(Xq, Xz)/Fi(Xl,Xz), where F3=4x‘l‘x§(2 f[he peak, it is understandable that the pumped chaites

—2c0S0+X%siNd)  and  Fa=x3E+2 (X +Xo) 2+ 4 (X, integral ofIT over the area enclosed by the conidiar both

+X) Sin 8+ 4(1—Xy%,) (1— COS). norma_l and NS structures are equal, which will be shown
In Fig. 1 we plot both[INS andIIN as well as their cross analytically below. .

sections along and perpendicular to the resonance line. We After the expansion in powers d@f in Egs.(18) and (19)

see thaflTNS and ITN are peaked around the resonance line2nd keeping the leading orders &f we have

Two features are worth noticing. First of all, the peak BtS

is much sharper than that &Y. This is understandable and

is due to the resonance nature of NS structures near the reso-
nance line. In the Breit-Wigner form, the transmission coef-

9

Fz=p'[2+p(—1+2)](— 1+z)3(1+z)4%, (24)

ficients for normal and NS structures are, respectively, _ 282 _E 2_p l 20 2
S,]2=T,T,/[(E—E,)?+T2/4] and (see Ref. 20 |Sy 2 Fa=2(1-p)o™+| —g+ 5 +3p(~1+2)
=Al2T'3/[4(E—E,)?+T2+T3]?, whereE, is the resonant 1

level, I'y andI', are the decay widths into the left and right +—pH(—1+2)2| 5% (25)
leads. HencéS,,J|? decays much faster away frof} than 16

|S,4]2. The scattering matri$,; and Sy, will appear, respec-

tively, in Egs. (3) and (15) implicitly as can be seen from

Fisher-Lee relation Eq11) and the Dyson equatio.mszr11 e 1 Fg
=G, GY, %! Second, the peak height ®fNS is four times Q :;fo pdpf_ldzEﬁ ; (26)
larger than that of IN. This is precisely due to the construc- 4

tive interference of direct reflection and multiple Andreev using the fact that lirg -.o6%/ (x*+ %)%= (3/8)7(x), Eq.
reflection’® Now the physics of pumping at resonance is(26) becomes

clear. For the resonance pumping in the weak pumping re-

gime, we are looking at the small neighborhood of the peak. NS 1 (1-2%3%1+2)? 3
The area of the neighborhood has to be small since it is the Q —Sﬁeflem—
weak pumping. The neighborhood has to be around the peak

with x;~X,, since only around the peak the transmissionHence the pumped charge for NS system is quantized at the
coefficient is approximately 1. As a result, we obtain imme-same value as that of the normal structure.

diately that the pumped charge or pumped current of the NS Now we have a better physical picture for the transport

structure near the resonance is four times that of the corrgsroperties of the NS structure. For the conductance or the

So Eq.(3) becomes

(27)
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|-V curve, we needS,; or S,.. For normal structure, the oOr leaving the quantum dot. Hence, in the pumping cycle,
current is given by IN=2e/hfdE[f(E—eV,)—f(E electrons are shuttled pairwise through the dot. In the pres-
—eV,)]|S14? and hence at resonance and at zero temperaence of the superconducting lead, the resonance (bo¢h

ture GN=IN/(V;—V,)=2e’/h. For NS structure, we the energy and the widthis exactly the same as that of
have®3?  INS=2e/hfdE[f(E—eV,)—f(E+eV,)]|Shl? normal case since the scattering matrix is given &y

and at resonanc&NS=INSVv,=4e?/h, which is the well-  =i|S;)%/(1+]S,,?) whenE=0. Therefore, the same argu-
known doubling of the conductance. For pumped charge oment applies to the superconducting case and the quantiza-
pumped current at resonance, however, it depends only aibn unit is 2e. Note that our statement is only valid when the
9y, S11 01 dy See (E=0 is assumed Due to the constructive electron interaction is neglected. For the case of two normal-
interference between direct reflection and multiple Andreevmetal contacts, if interactions are included the quantization
reflection in theweak pumping regimethe charge transfer will remain, but now the quantum is onkz Only one elec-
increases by a factor of 4 when one of the leads becomesgon at a time can enter the region between the barriers; ad-
superconducting. In the strong pumping regime, howevergdition of a second electron is forbidden by the Coulomb
the charge transfer is quantized at the value equal to that @fiockade. In the presence of the superconducting lead, since
normal structure, if the pumping contour is chosen such thaghe Andreev reflection requires two electrons with opposite
the resonance line is enclosed. The physics behind this caghins in order to produce the supercurrent, it seems that the
be uncjerstood as follows.. In _the normal case, the Conto%umping is not allowed in the strong pumping regime due to
enclosing the resonance line in the parameter space passgg Coulomb blockade. In this paper, we have also neglected
through the resonance line at two points (o) =(0,—6)  effects of the temperature and inelastic scattering. As dis-
when the left contact is almost closed and§,0) when the  cyssed in Ref. 17 the temperature will destroy the quantiza-
right contact is almost closed. When passing through thesgon of the pumped charge. When inelastic channel is present

two points, the resonance level of thg dot crosses the Fermin additional physical mechanism for an incoherent pump
energy. At each crossing, the occupation of the level changegect will show up®

and two electrons with opposite spins enter or exit the region

between the barriers. Since one of the tunnel barriers has We gratefully acknowledge support by a RGC grant from
zero conductance at these points, it is clear that the electrorise SAR Government of Hong Kong under Grant No. HKU
must have tunneled through the other contact upon entering215/99P.
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