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Universal quantum gates based on a pair of orthogonal cyclic states: Application to NMR system
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We propose an experimentally feasible scheme to achieve quantum computation based on a pair of orthogo-
nal cyclic states. In this scheme, quantum gates can be implemented based on the total phase accumulated in
cyclic evolutions. In particular, geometric quantum computation may be achieved by eliminating the dynamic
phase accumulated in the whole evolution. Therefore, both dynamic and geometric operations for quantum
computation are workable in the present theory. Physical implementation of this set of gates is designed for
NMR systems. Also interestingly, we show that a set of universal geometric quantum gates in NMR systems
may be realized in one cycle by simply choosing specific parameters of the external rotating magnetic fields.
In addition, we demonstrate explicitly a multiloop method to remove the dynamic phase in geometric quantum
gates.
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I. INTRODUCTION

Building a practical quantum computer with a large nu
ber of qubits has recently attracted much attention. For r
ization of a universal quantum computer, there are cer
minimum requirements: the storage of quantum informat
in a set of two-level systems~qubits!, the processing of this
information using quantum gates, and a mean of final re
out @1#. So far, a number of systems has been propose
potentially viable quantum computer models, includi
trapped ions @2#, cavity quantum electrodynamics@3#,
nuclear magnetic resonce~NMR! @4#, and low-capacitance
Josephson juctions@5–8#, etc.

An essential requirement in quantum computation is
maintain quantum coherence in a computing system, s
the coherent interference pattern between the multitude
superpositions is necessary for taking advantage of quan
parallelism. However, the coupling of a quantum system
its environment leads to the so-called decoherence proc
in which encoded quantum information is lost to the en
ronment. The error rates of the individual gate operatio
should be less than 1024 to assure that the quantum com
puter works fault tolerantly@9#. To accomplish the required
precision, the decoherence time of the system has to be m
longer than the operation time required for computing. H
to suppress the infamous decoherence effects is one
task for quantum computing.

One of schemes to correct the errors caused by deco
ence is quantum error-correcting codes@10–12#, through
which originally encoded information can be recovered
suitable encondings and measurements of qubits. An alte
tive approach to avoid decoherence has been propose
Refs.@13,14#, where decoherence-free states have been u
as qubits. The decoherence-free space is a subspace wh
inherently immune to unwanted noise. In addition, evolut
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of the system must not drive the state out of the decohere
free space. So far, all of these strategies require ex
physical resources, such as additional manipulations or
coding one logical qubit by several ancillary physical qubi

Another attractive strategy for fault-tolerant quantu
computation is based on a topological idea@15#, where gate
operations depend only on global features of the control p
cess, and are therefore largely insensitive to local inacc
cies and fluctuations. A significant advance in this direct
is made by the so-called geometric quantum computa
@16#. In this kind of scheme, a universal set of quantum ga
may be realized by pure geometric phases, which dep
only on the geometry of the path executed@17–19#, and
therefore provides a possibility to perform quantum gate
erations by an intrinsically fault-tolerant way@16,20,21#.

Several basic ideas of adiabatic geometric quantum c
putation by using NMR@20#, superconducting nanocircuit
@8#, trapped ions@21#, or semiconductor nanostructures@22#
were proposed. However, the adiabatic evolution appear
be quite special, and thus the nonadiabatic correction on
phase shift may need to be considered in some realistic
tems as it may play a significant role in a whole proce
@18,23#. A serious disadvantange of the adiabatic approac
that the evolution time must be much longer than the typi
operation timet0 of the qubit system, while the evolutio
must be completed within the decoherence time, which le
to an intrinsical time limitation on the operation of quantu
gate. Therefore, a generalization to nonadiabatic case
valuable and important in controlling quantum gates.

Recently, nonadiabatic geometric quantum computat
has been proposed theoretically@24,25#, and detection of the
conditional nonadiabatic geometric phase shifts for quan
gates using NMR is also experimentally reported@26#. Nev-
ertheless a systematic study of this topic, especially the
pication to NMR systems, is still highly desirable. In th
paper, we propose an experimentally feasible nonadiab
scheme to achieve a universal set of quantum gates@27#
based on a pair of orthogonal cyclic states. In this sche
quantum gates may be implemented based on either the
©2003 The American Physical Society19-1
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S.-L. ZHU AND Z. D. WANG PHYSICAL REVIEW A67, 022319 ~2003!
phase accumulated in the cyclic evolution or the geome
Aharonov-Anandan~AA ! phase shift@18# after eliminating
the dynamic phase. Therefore, quantum computation im
mented by dynamic and geometric operations can be un
in the present theory. In addition, physical implementation
this set of gates is designed in detail for NMR systems
which the qubits considered are spin-1/2 particles in the p
ence of a magnetic field rotating uniformly around a fix
axis. Although the Schro¨dinger equation of this system wa
solved exactly long time ago@28#, and the AA phase was
previously obtained explicitly in Refs.@23,29#, we here de-
rive all phase shifts explicitly and show that they may
applicable in achieving a universal set of logical gat
Moreover, the nonadiabatic geometric computation may
experimentally achieved just by simply choosing spec
controllable parameters, with the cyclic states as a pai
dark states@24#.

The paper is organized as follows. In Sec. II, we disc
general aspects of the geometric phase and cyclic evolu
and then present a theory applicable for achieving a unive
set of quantum gates based on a pair of orthogonal cy
states. In Sec. III, the theory is applied to a viable NM
quantum computer. The paper ends with a brief summar

II. IMPLEMENTATION OF QUANTUM GATES WITH A
PAIR OF ORTHOGONAL CYCLIC STATES

For universal quantum computation, we need to achi
two kinds of noncommutable single-qubit gates and one n
trivial two-qubit gate@27#. Thus we here consider only two
qubit systems. A general Hamiltonian for two qubits may
expressed as

Ĥ52
1

2
m(

i 51

3

@s i
(1)Bi

(1)~ t !1s i
(2)Bi

(2)~ t !1Ji~ t !s i
(1)s i

(2)#,

~1!

where s i
(k) (k51,2) are the Pauli operators for qubitk,

Bi
(k)(t) are local~real or fictitious! magnetic fields acting on

kth qubit, andJi represents the strength of the interacti
between two qubits.

A. Cyclic evolution and geometric phases

Before the design of quantum gates, we present first g
eral aspects of the cyclic evolution in a qubit system. A c
clic evolution is referred to as that the state of the syst
returns to its original state after evolution. Mathematically
normalized stateuc(t)& is cyclic in the interval@0,t# if and
only if

uc~t!&5eiguc~0!&,

with g being a real number. The total phaseg acquired in the
evolution would contain both geometric and dynamic co
ponents, denoted asgg andgd , respectively. Usually, not al
states take cyclic evolutions. A sufficient but not necess
condition for cyclic evolution is that the initial state is
nondegenerate energy eigenstate of a cyclic Hamilton
which changes adiabatically.
02231
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We first focus on the cyclic evolution in a qubit system
At this stage, only one term

Ĥ52mB•sW /2 ~2!

needs to be considered. HereB denotes the total magneti
field felt by the qubit, which may include a real external fie
as well as an effective magnetic field induced by the inter
tion between different qubits. The HamiltonianĤ is chosen
to go through a cyclic evolution with periodt in the param-
eter space$B%.

We here present how to calculate all kinds of phase sh
The dynamic phase may be directly calculated from its d
nition given by

gd52
1

\E0

t

^c~ t !uĤuc~ t !&dt, ~3!

while the geometric part is not easy to derive. We first a
dress a method to calculate adiabatic Berry’s phase. By a
batically changingĤ around a circuit in$B%, the eigenstate
will accumulate an adiabatic Berry’s phasegB57Vs/2,
where the signs7 depend on whether the system is in t
eigenstate aligned with or against the field, andVs is the
solid angle subtended by the magnetic field at the degene
B50 @17#. Vs can be derived as

Vs5E
0

tBx] tBy2By] tBx

uBu~Bz1uBu!
, ~4!

under the condition of a closed trajectory withB(t)5B(0)
@25#.

Since the requirement of the adiabatic evolution could
stringent, a generalization to nonadiabatic case is more
sirable. The generalization of adiabatic Berry’s phase t
nonadiabatic cyclic evolution was introduced in Ref.@18#,
where a general geometric phasegg5g2gd is defined as

gg5 i E
0

t K c̃~ t !U ]

]t Uc̃~ t !L . ~5!

Here uc̃(t)&5e2 i f (t)uc(t)& with f (t)2 f (0)5g, leading to
uc̃(t)&5uc̃(0)&. The AA phase can be regarded as a ge
metric phase associated with a closed curve in the projec
Hilbert space, and approaches Berry’s phase in the adiab
limit. The AA formulation applies regardless of the Ham
tonian Ĥ being cyclic or adiabatic; it depends only on th
cyclic evolution of the system itself.

Normally, Eq. ~5! is not directly used to calculate th
geometric phase accumulated in a cyclic evolution. We h
present an alternative method to calculate the nonadiab
geometric phases. This approach is more convenient for
bit systems discussed in this paper. For a spin-1/2 particl
the presence of an arbitrary magnetic field, the nonadiab
cyclic AA phase is just the solid angle determined by t
evolution curve in the projective Hilbert space—a un
sphere S2. Any two-component ‘‘spin’’ state uc&
5@e2 iw/2cos(u/2),eiw/2sin(u/2)#T may be mapped into a uni
9-2
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UNIVERSAL QUANTUM GATES BASED ON A PAIR OF . . . PHYSICAL REVIEW A 67, 022319 ~2003!
vectorn5(sinu cosw,sinu sinw,cosu) in the projective Hil-
bert space via the relationn5^cusW uc&, whereT represents
the transposition of matrix. By changing the magnetic fie
the AA phase is given by

gg52
1

2EC
~12cosu!dw, ~6!

whereC is along the actual evolution curve onS2, and is
determined by the equation

] tn~ t !52mB~ t !3n~ t !/\. ~7!

This gg phase recovers Berry’s phase in adiabatic evolut
@23#. The cyclic evolution implies thatn(t) undergoes a
closed path in the projective Hilbert space.

We consider a process, in which a pair of orthogo
statesuc6& can evolve cyclically starting fromuc6(0)&. A
pair of orthogonal state may be parametrized as

uc1&5S cos
u

2
e2 iw/2

sin
u

2
eiw/2

D ~8!

and

uc2&5S 2sin
u

2
e2 iw/2

cos
u

2
eiw/2

D . ~9!

Denoting n6(t)5^c6(t)usW uc6(t), it is straightforward to
find that n1(t)52n2(t) by using Eqs.~8! and ~9!. For a
cyclic evolution,uc6(t)&5eig6uc6(0)&. Besides, we have
an important relation:g152g2 . This is because the dy
namic phase

gd152
1

\E0

t

E1~ t !dt52
1

\E0

t

2E2~ t !dt52gd2

with

E6~ t !5^c6~ t !uHuc6&52mn6~ t !•B~ t !,

and the geometric phasegg„2n(0)…52gg„n(0)… at any
time if the two initial states correspond to6n(0) @23#. By
taking into account the cyclic condition foruc6&, we finally
have

U~t!uc6&5exp~6 ig!uc6&, ~10!

whereU(t) is the evolution operator. Hereafter we deno
g,gg , andgd as the phases foruc1& for brevity.

B. Quantum computation

We now show how to realize a universal set of quant
gates based on either the total phases or the geometric
phases accumulated in cyclic evolutions.
02231
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1. Quantum logical gates

A quantum logical gate is a unitary operatorU acting on
the states of a certain set of qubits, that is,U may be referred
to as a quantum gate ifucout&5Uuc in& with uc in& being the
input state anducout& being the output state. The space of
the possible input and output states makes up the Hil
space of states for the quantum computer. IfH is the Hilbert
space of a single qubit, anduc i& is a given basis state for th
i th qubit, then a basis vectoruc& for the states of the quan
tum register is a tensor product of qubit statesuc&5uc1&
^ uc2& ^ •••^ ucn&PH^ n. UN is an N-qubit gate when
uc in&PH^ N. Nevertheless, we need not to implement allUl
(1< l<N), but only a universal set of gatesUu . A set of
gatesUu is called universal if any unitary actionUl can be
decomposed into a product of successive gates inUu . It is
shown that two noncommutable one-qubit~single-qubit!
gates and one nontrivial two-qubit gate consist of a unive
set of gates@27#. This universality is very useful in practice
since it allows us to focus only on how to construct a u
versal set of gates.

We first construct the single-qubit gates by assuming t
a pair of orthogonal statesuc6& can evolve cyclically. We
write an arbitrary input state asuc in&5a1uc1&1a2uc2&
with a65^c6uc&, and express the two cyclic initial states
uc1&5cosx/2u0&1sinx/2u1& and uc2&52sinx/2u0&
1cosx/2u1&, whereu0& andu1& constitute the computationa
basis for the qubit. Using Eq.~10!, the output state at timet
is found to be@25#

ucout&5Usq~x,g!uc in&,

where

Usq~x,g!

5S eigcos2
x

2
1e2 igsin2

x

2
i sinx sing

i sinx sing eigsin2
x

2
1e2 igcos2

x

2

D .

~11!

For this gate, there exists a relation

@Usq~x,g!#†5@Usq~x,2g!#,

where the adjoint operation † corresponds to transposi
and complex conjugation of matrix. Thus the important
operator for a unitary operationU may be experimentally
achieved by the operationU with the inverse sign of the
phase factor.

It is straightforward to verify that two operation
U (1)(x1 ,g1) andU (2)(x2 ,g2) are noncommutable as long a

sing1sing2sin~x22x1!Þ0. ~12!

Since two kinds of noncommutable operations constitut
universal set of single-qubit gates, we achieve the unive
single-qubit gates by choosingx1Þx21 j p for any non-
trivial phasesg1 and g2 (g1,2Þ j p), where j is an integer.
9-3
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For example, the phase-flip gateU1
sq(g1)5exp(22ig1u1&^1u)

~up to an irrelevant overall phase! is accomplished atx
50; the gateU2

sq(g2)5exp(ig2sx) is obtained atx5p/2,
which produces a spin flip~NOT-operation! when g25p/2
and an equal-weight superposition of spin states wheng2

5p/4. U1,2
sq are two well-known single-qubit gates.

In terms of the computational basis$u00&,u01&,u10&,u11&%,
where the first~second! number represent the state in th
controlled~target! qubit, the unitary operator to describe th
two-qubit gate is given by@8,25#

Utq5diag~U (g0,x0) ,U (g1,x1)!, ~13!

under the condition that the control qubit is far away fro
the resonance condition for the operation of the target qu
Here gd (xd) represents the total phase~the cyclic initial
state! of the target qubit when the control qubit is in sta
d(50,1). Following Ref.@27#, we find that unitary operato
~13! is a nontrivial two-qubit gate if and only ifg1Þg0 or
x1Þx0 (mod 2p). For example,

U (g0,g1)
tq

5diag~eig0
,e2 ig0

,eig1
,e2 ig1

!, ~14!

whenx15x050; this gate was proposed to be achieved
the adiabatic case in the charge qubit@8#. Combining gate
~14! with single-qubit operations we are able to perform
gate described by

UCN5@ I ^ Usq~p/4,p/2!#U (0,p/2)
tq @ I ^ Usq~p/4,p/2!#†

5diag~ I ,isx!, ~15!

with I as a 232 unit matrix. This gate is equivalent to th
controlled-NOT ~c-NOT, which is defined asum&un&→um&um
% n&, where% denotes the addition modulo 2! gate up to an
overall phase factor for the target qubit. On the other ha
U (0,g1)

tq become the controlled-phase@c-PHASE, which is de-
fined as um&un&→um&exp(imnf)un&# gate by removing a
overall phase for the target qubit.

An alternative practical method to achieve the controlle
two-qubit gate is also available under certain conditions. D
noting the Hamiltonian of the target qubit asHt , we may
produceHt50 by choosing certain parameters ofHt when
the controlled qubit is in the stateu0&, while Ht is able to
realize a required gate when the controlled qubit is in s
u1&. Then the gate in this case is given by

Utq5diag„I ,U~g,x!…, ~16!

whereg is the total phase accumulated in the evolution wh
the controlled qubit is in stateu1&. Gate~16! corresponds to
gate~13! for g050 andx05p/2. UCN in Eq. ~15! may be
directly derived wheng5x5p/2.

So far, we have demonstrated that all elements of qu
tum computation may be achievable by using a pair of
thogonal cyclic states.
02231
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2. Geometric quantum gates

The quantum gatesU described in Eqs.~11!, ~13! @or ~16!#
may be divided into two categories: one is referred to a
geometric gate if the phase inU is a pure geometric evolu
tion operator (gd50) @30#, and the other is referred to as
dynamic gate as long as there exists a nonzero phase ind
from dynamic origin~i.e., gdÞ0). Geometric quantum com
putation demands that logical gates in computing are real
by using geometric phase shifts, so that it may have
built-in fault-tolerant advantage due to the fact that the g
metric phases depend only on some global geometric
tures.

A key point in geometric quantum computation is to r
move the dynamic phase. We here address two meth
@8,20,21,24,25#. A simpler and also practical one is to choo
some specific external parameters such that the dyna
phases of the pair of cyclic states accumulated in the wh
evolution may be eliminated. Interestingly, with this meth
the corresponding cyclic states in NMR systems are d
states~the eigenstate with the zero-energy eigenvalue!, and
thus no dynamic phase is involved. The dark state met
was proposed for geometric quantum computation w
trapped ions@21#, and then described in NMR systems@24#.
The other is referred to as a two-loop method: let the evo
tion be dragged byĤ along two closed loops, with one bein
in tP@0,t# and the other intP@t,t1t8#. The dynamic
phases accumulated in the two loops may be canceled, w
the AA phases will add.

III. APPLICATION TO NMR SYSTEMS

So far, we have proposed a general scheme to achie
universal set of quantum gates based on a pair of orthog
cyclic states. It is important to further consider implementi
this scheme with real physical systems. Here, we illustr
this implementation using NMR systems@4,20#. Neverthe-
less, it is worth pointing out that, in principle, the abov
theory may be applicable to other systems which are po
tially viable quantum computer models.

For NMR systems, the magnetic field in Eq.~1! or ~2! in
a rotating magnetic field is given by

B~ t !5~B0cosvt,B0sinvt,B1!, ~17!

where B0,1 and v are constants. The qubit stateuc(t)& is
described by the Schro¨dinger equation

i\
]

]t
uc~ t !&5Huc~ t !&, ~18!

where the Hamiltonian for a single qubit is given by

H5
1

2
~v0sxcosvt1v0sysinvt1v1sz! ~19!

with v i52gmBi /\ ( i 50,1) andg being the gyromagnetic
ratio. The Schro¨dinger equation with Hamiltonian~19! can
be solved analytically@23,28#. In terms of explicit form of
the solutionn(x,vt) represented in Ref.@23#, it is found that
9-4
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a pair of orthogonal initial statesuc6& with x
5arctan@v0 /(v12v)# take cyclic evolutions with the period
t52p/v @24#, and the evolution paths are the curves on
Bloch sphere swept by unit vectors6n(x,vt). Therefore,
we may use this pair ofuc6& to achieve single-qubit gate
described in Eq.~11!, where the corresponding phases f
one cycle are given by

gg52pS 12
v12v

V D , ~20!

gd52p
v0

21v1~v12v!

vV
, ~21!

g52p~11V/v!, ~22!

with V5Av0
21(v12v)2. In the derivation of the dynamic

phase, E1(t)5@v1cosx1v0sinx#\/2 is used. We may
choose any two processes with different values$v0 ,v1 ,v%
satisfying Eq.~12! to accomplish two noncommutable qub
gates.

A similar method may be employed to achieve the tw
qubit operation. The spin-spin interaction in NMR is ve
well approximated by

HI5Jsz
1sz

2/2.

The state of control qubit is~almost! not affected by any
operation of the target qubit ifv1

t of the target qubit is cho-
sen to be significantly different fromv1

c of the control qubit.
We may prove that the initial statesuc6& described byxd

5arctan@v0 /(v1
d2v)# are a pair of orthogonal cyclic state

and may be used to achieve a two-qubit gate described
Eq. ~13!. Herev1

d5v11(2d21)J, v, v0, andv1 are pa-
rameters for the target qubit~the superscript ‘‘t’’ is omitted
for brevity!. The corresponding phases for one cycle
given by

gg
d52pS 12

v1
d2v

Vd D , ~23!

gd
d52p

v0
21v1

d~v1
d2v!

vVd
, ~24!

gd52p~11Vd/v!, ~25!

with Vd5Av0
21(v1

d2v)2. It is seen from Eq.~25! that the
gate described by Eq.~16! may be accomplished by choosin
the following special parameters,

v5v05v12J.

It is worth pointing out that we may achieve the nonad
batic geometric gates by choosing some specific parame
with which gd50 in the whole process. It is direct to verif
that the dynamic phase in Eq.~21! is zero under the follow-
ing condition,
02231
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v5
v0

21v1
2

v1
. ~26!

Thus the single-qubit gates with the parameters satisfy
Eq. ~26! are geometric quantum gates with geometric ph
shift gg52p(11v0 /Av0

21v1
2). The geometric phasesgg

versus the ratiov1 /v0 are plotted in Fig. 1. It is seen that th
nontrivial phases required for two universal single-qu
gates may be simply realized by any two processes w
different values ofv1 /v0 ~except for zero or infinite!.

Besides, the geometric two-qubit gates are realized wh
ever

v52v1 , ~27!

v1
25v0

21J2. ~28!

Correspondingly, the conditional geometric phases are gi
by gg

d52p(11Av1
d/2v). Figure 2 shows the conditiona

phasesgg
d versus the ratiov1 /J. It is evident that the non-

trivial phases (gg
0Þgg

1 in mod 2p) required for two-qubit
gates may be achieved for 0,v1 /J,`.

It is worth pointing out that the constraint described
Eq. ~26! @or Eqs.~27! and~28!# is equivalent to the condition
that the instantaneous dynamic phase for the wave func
in single qubit ~or the target qubit! is always zero@24#,
namely, the statesuc6& used here are the dark states.

The advantage of the above nonadiabatic gates is thatv is
of the same order of magnitude asv0 or v1. This implies
that the speed of geometric quantum gate is comparable
that of the dynamic quantum gate. In contrast, the spee
quantum gate based on adiabatic Berry’s phase is m
lower than that of gate using dynamic phase, since the a
batic condition requires that bothv0 andv1 should be much
larger thanv.

FIG. 1. The geometric phasegg versus the ratiov1 /v0.
9-5



l

a
y

i

s

m

u
y

ses
ld

s in
za-
n

ce-

at
e

o-

d
etic

y
wo
lu-

S.-L. ZHU AND Z. D. WANG PHYSICAL REVIEW A67, 022319 ~2003!
Note that, the geometric gatesU1,2
sq may not be practica

by directly using the fieldB in Eq. ~17! as the corresponding
geometric phase in Eq.~20! is determined by the anglex.
For example, Eq.~20! can be rewritten asgg52p(1
2cosx); thus gg50 (2p) as x50 (p/2). This problem
can be solved by rotating the field. It will be seen below th
the parameterx for the initial cyclic state may be changed b
rotating the symmetric axis of field~17!, while the phases in
Eqs.~20!, ~21!, and~22! are invariant.

We introduce a rotation operatorR( ŷ,x82x) that repre-
sents the rotation of anglex82x around theŷ axis, that is,

R(2)~ ŷ,x82x!5exp@2 i ~x82x!sy# ~29!

in the SU~2! representation, and

R(3)~ ŷ,x82x!5exp@2 i ~x82x!t2# ~30!

with

t25S 0 0 i

0 0 0

2 i 0 0
D ~31!

in the SO~3! representation. Assuming the required angle
x8 in Eq. ~11!, we may apply a magnetic field
B85R(3)( ŷ,x82x)B, then the solution of the cyclic state
are n68 5R(3)( ŷ,x82x)@6n6(x,vt)# @ uc6&5R(2)( ŷ,x8
2x)uc6&] because of the spherical symmetry of the syste
Thusx may change to any requiredx8 for implementation of
the quantum gate, with the geometric phase being
changed, because the area swept byn8 is the same as that b
n. On the other hand, we have

FIG. 2. The conditional phasesgg
d versus the ratiov1 /J.
02231
t

s

.

n-

E68 ~ t !52mn68 ~ t !•B8~ t !

52m@R(3)~ ŷ,x82x!n6~ t !#•@R(3)~ ŷ,x82x!B~ t !#

5E6~ t !.

Therefore, we have proven that the invariant of all pha
with respect to the rotation of the symmetric axis of the fie
in Eq. ~17!. We conclude thatg (x) in gate ~11! is deter-
mined by the values of$v0 ,v1 ,v% ~the symmetric axis of
the magnetic field!. For example, if the magnetic field isB8
for x850 (p/2), we may achieve the geometric gateU1
(U2) with g1,252p(12cosx). It is worth pointing out that
the above method to controlx andgg separately in quantum
gates is also feasible in nongeometric gates.

We turn to address how to remove the dynamic phase
a multiloop nonadiabatic evolution. The possible generali
tion of a multiloop method from the adiabatic evolutio
@8,20# to nonadiabatic case was mentioned in Refs.@24,25#.
We here wish to demonstrate explicitly one removal pro
dure of the dynamic phase.

Let us first choose the magnetic fields in two loops as
Loop 1.

B5~B0cosvt,B0sinvt,B1!, tP@0,t!. ~32!

Loop 2.

B85R(3)~ ŷ,a82a!~2B08cosvt,2B08sinvt,2B18!,

tP@t,2t#, ~33!

where t52p/v, a5arctan@v0 /(v12v)#, and a8
5arctan@v08/(v181v)# with v i852gmBi8/\ ( i 50,1). As
shown before, a pair of orthogonal initial statesuc6& (uc68 &)
with x5a (x85a8) take cyclic evolutions during the loop
one ~two!. The rotationR(3)( ŷ,a82a) in Eq. ~33! ensures
that the cyclic initial states in the two loops are the same
the timet52p/v @31#. Therefore, the gate described by th
two loops is given byU5U(x,g (1)1g (2)), where g (1)

(g (2)) is the total phase accumulated in the loop one~two!.
Denotinggd

( l ) ( l 51,2) andgg
( l ) the dynamic phases and ge

metric phases accumulated in the loopl, respectively, we
now illustrate that there exist processes satisfying

gg
(1)1gg

(2)52Gp,

gd
(1)1gd

(2)50,

where2Gp is a nontrivial geometric phase which we inten
to realize in geometric quantum gates. Then the magn
fields should satisfy the following equations:

v12v

V
1

v181v

V8
522G, ~34!

v0
21v1

22vv1

vV
5

~v08!21~v18!21vv18

vV8
, ~35!

where V5Av0
21(v12v)2 and V85A(v08)

21(v181v)2.
As for the requiredG, it is possible that there exist man
solutions, since there are five unknown variables in t
equations. For example, we numerically calculate the so
9-6
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tions for G51/2. For simplicity, we setv185v1 as the unit,
and find that if$v,v0 ,v08% (0,v,v1) satisfy the equations
given by

v11.133 89v050.999 98,

v11.070 91v020.062 99v0850.888 89,

which describe a straight line~segment! in the three-
dimensional space, the geometric phase accumulated in
whole two-loop evolution is just what we required, with th
total dynamic phase being zero.

The multiloop method to remove dynamic phase is a
feasible for two-qubit geometric quantum gates. We cho
the magnetic fields on the target qubit in two loops as

Loop 1.

B5~B0cosvt,B0sinvt,B1!, tP@0,t!, ~36!

Loop 2.

B85R(3)~ ŷ,h!~2B08cosv8t,2B08sinv8t,2B18!,

tP@t,t1t8#, ~37!

wheret852p/v8. The angle

h5arctan@v0 /~v1
d2v!#2arctan@v08/~v18

d1v8!#
~38!

should be independent on the stated in the control qubit. To
guarantee that the interaction between qubits is still de
mined by the original initial stated of the control qubit, the
control qubit should be rotated byR(3)( ŷ,h) at time t5t
@The state of the controlled qubit is unchanged if a rotat
R(3)( ŷ,2h) is also applied at timet1t8]. Correspondingly,
the d-independent constraint described by Eq.~38! can be
rewritten as

v0

~v12v!22J2
5

v08

~v181v8!22J2
. ~39!

On the other hand, the condition under which there e
processes with zero dynamic phase is

v0
21v1

d~v1
d2v!

vVd
5

~v08!21v18
d~v18

d1v8!

v8V8d
, ~40!

where Vd5Av0
21(v1

d2v)2 and V8d

5A(v08)
21(v18

d1v8)2. Note that the geometric phases a
nontrivial (gg

1Þgg
0 in mod 2p), and thus can be applicabl

in geometric quantum computation.
The magnetic fields, which satisfy Eqs.~39! and ~40! in

loop two, as a function ofv are plotted in Fig. 3~a!, where
v05v155.0 with J as the unit. We may numerically calcu
late the three unknown variables$v8,v08 ,v18% in three equa-
tions described by Eqs.~39! and ~40!. Then the conditional
geometric phases may be obtained from equationsgg

d5
2Gdp with
02231
the

o
e

r-

n

t

Gd522
v1

d2v

Vd
2

v18
d1v8

V8d
.

The corresponding conditional phasesgg
d for v05v155.0

as a function ofv are plotted in Fig. 3~b!. It is seen that the
nontrivial phasesgg

1Þgg
0 may be realized by appropriatel

choosing the values of$v,v0 ,v1% and $v8,v08 ,v18%. As a
consequence the nontrivial two-qubit geometric quant
gate may be achieved.

IV. CONCLUSIONS AND DISCUSSIONS

An experimentally feasible scheme based on a pair
orthogonal cyclic states has been proposed to accompli

FIG. 3. ~a! The magnetic fields required in loop two versusv.
~b! The conditional geometric phasesgg

d versusv.
9-7
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universal set of quantum logical gates, in which quant
computation implemented by both dynamic and geome
operations can work, i.e., quantum gates in this scheme
be implemented by the total phases accumulated in the cy
evolution, and the geometric quantum computation can
achieved by eliminating the dynamic phase. Furthermore,
geometric phase shift used is the cyclic AA phase, which
be nonadiabatic. It is possible that the gates achieved
can handle arbitrary quantum computation without the intr
sic limitation on operation time. Therefore, the nonadiaba
method proposed here may allow us to physically implem
~geometric! quantum computation even for systems w
very short decoherence time, which could be especially u
ful for solid-state implementations of scalable quantum co
puters.

We here discuss briefly the errors induced by rand
noises in geometric quantum computation. Random no
may lead to two kinds of errors. One is that the path may
be exactly closed at the end of the gate operation, leadin
the noncyclic corrections. The other is that the evolution p
may fluctuate around the ideal path with known cone an
The noncyclic corrections could be negligible at least wh
the first-order corrections from random noises are taken
account, as indicated in Ref.@32#. On the other hand, as tha
in the adiabatic cyclic geometric scheme, the present sch
is also robust to the second type of errors as the area
closed by the evolution path~geometric phase! is insensitive
to the random fluctuation.
ev
,

6
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t-
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Finally, we wish to make a few remarks on experimen
implementation of geometric quantum computation. T
simplest geometric quantum computation should experim
tally complete the following three steps one by one:~i! de-
tection of the~conditional! geometric phase shifts in qub
systems;~ii ! implementation of a universal set of geometr
quantum logic gates, particularly the implementation o
conditional gate.~iii ! illustration of a simple algorithm by
pure geometric quantum gates, such as Deutsch’s prob
Grover’s search algorithm, or Shor’s factorization algorith
etc. Two recent exciting experiments reported that the c
ditional geometric phase shifts for quantum logical gates
ing NMR were detected in adiabatic@20# and nonadiabatic
@26# regions. However, a universal set of gates as well a
simple quantum algorithm experimented by~adiabatic or
nonadiabatic! geometric phases are still awaited.
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