3,154 research outputs found

    Free radical mediated oxidative degradation of carotenes and xanthophylls

    Get PDF
    This article reviews the excited-state quenching, pro-vitamin A activity and anticarcinogenicity of carotenes and xanthophylls in relation to their chemical structures. Excited-state quenching improved with the length of the conjugated chain structure. Pro-vitamin A activity was dependent on the presence of at least one beta-ionyl ring structure. The effectiveness of carotenoids as antioxidants depended on their ability to trap peroxyl radicals with production of resonance-stabilized carotenyl radicals. The products identified from oxidations of carotenes and xanthophylls with molecular oxygen and other oxidizing agents are presented. The free radical-mediated mechanisms that have been proposed to account for the different classes of products are reviewed.Publisher PDFPeer reviewe

    Boys' Agricultural Club Encampment School: Waco, November 6th, 7th and 8th, 1916.

    Get PDF
    4 p

    Energy non-equipartition in systems of inelastic, rough spheres

    Get PDF
    We calculate and verify with simulations the ratio between the average translational and rotational energies of systems with rough, inelastic particles, either forced or freely cooling. The ratio shows non-equipartition of energy. In stationary flows, this ratio depends mainly on the particle roughness, but in nonstationary flows, such as freely cooling granular media, it also depends strongly on the normal dissipation. The approach presented here unifies and simplifies different results obtained by more elaborate kinetic theories. We observe that the boundary induced energy flux plays an important role.Comment: 4 pages latex, 4 embedded eps figures, accepted by Phys Rev

    Peanuts and Pigs.

    Get PDF
    18 p

    Shocks in supersonic sand

    Full text link
    We measure time-averaged velocity, density, and temperature fields for steady granular flow past a wedge and calculate a speed of granular pressure disturbances (sound speed) equal to 10% of the flow speed. The flow is supersonic, forming shocks nearly identical to those in a supersonic gas. Molecular dynamics simulations of Newton's laws and Monte Carlo simulations of the Boltzmann equation yield fields in quantitative agreement with experiment. A numerical solution of Navier-Stokes-like equations agrees with a molecular dynamics simulation for experimental conditions excluding wall friction.Comment: 4 pages, 5 figure

    Inherent Rheology of a Granular Fluid in Uniform Shear Flow

    Full text link
    In contrast to normal fluids, a granular fluid under shear supports a steady state with uniform temperature and density since the collisional cooling can compensate locally for viscous heating. It is shown that the hydrodynamic description of this steady state is inherently non-Newtonian. As a consequence, the Newtonian shear viscosity cannot be determined from experiments or simulation of uniform shear flow. For a given degree of inelasticity, the complete nonlinear dependence of the shear viscosity on the shear rate requires the analysis of the unsteady hydrodynamic behavior. The relationship to the Chapman-Enskog method to derive hydrodynamics is clarified using an approximate Grad's solution of the Boltzmann kinetic equationComment: 10 pages, 4 figures; substantially enlarged version; to be published in PR

    Clustering and Non-Gaussian Behavior in Granular Matter

    Full text link
    We investigate the properties of a model of granular matter consisting of NN Brownian particles on a line subject to inelastic mutual collisions. This model displays a genuine thermodynamic limit for the mean values of the energy and the energy dissipation. When the typical relaxation time τ\tau associated with the Brownian process is small compared with the mean collision time τc\tau_c the spatial density is nearly homogeneous and the velocity probability distribution is gaussian. In the opposite limit τ≫τc\tau \gg \tau_c one has strong spatial clustering, with a fractal distribution of particles, and the velocity probability distribution strongly deviates from the gaussian one.Comment: 4 pages including 3 eps figures, LaTex, added references, corrected typos, minimally changed contents and abstract, to published in Phys.Rev.Lett. (tentatively on 28th of October, 1998

    Continuum theory of partially fluidized granular flows

    Full text link
    A continuum theory of partially fluidized granular flows is developed. The theory is based on a combination of the equations for the flow velocity and shear stresses coupled with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this theory to several important granular problems: avalanche flow in deep and shallow inclined layers, rotating drums and shear granular flows between two plates. We carry out quantitative comparisons between the theory and experiment.Comment: 28 pages, 23 figures, submitted to Phys. Rev.

    State-of-the-art in product service-systems

    Get PDF
    A Product Service-System (PSS) is an integrated combination of products and services. This western concept embraces a service-led competitive strategy, environmental sustainability, and the basis to differentiate from competitors who simply offer lower priced products. This paper aims to report the state-of-the-art of PSS research by presenting a clinical review of literature currently available on this topic. The literature is classified and the major outcomes of each study are addressed and analysed. On this basis, this paper defines the PSS concept, reports on its origin and features, gives examples of applications along with potential benefits and barriers to adoption, summarises available tools and methodologies, and identifies future research challenges

    Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: a precursor to successful worldwide colonization?

    Get PDF
    Article PurchasedIncreasing globalization has promoted the spread of exotic species, including disease vectors. Understanding the evolutionary processes involved in such colonizations is both of intrinsic biological interest and important to predict and mitigate future disease risks. The Aedes aegypti mosquito is a major vector of dengue, chikungunya and Zika, the worldwide spread of which has been facilitated by Ae. aegypti's adaption to human-modified environments. Understanding the evolutionary processes involved in this invasion requires characterization of the genetic make-up of the source population(s). The application of approximate Bayesian computation (ABC) to sequence data from four nuclear and one mitochondrial marker revealed that African populations of Ae. aegypti best fit a demographic model of lineage diversification, historical admixture and recent population structuring. As ancestral Ae. aegypti were dependent on forests, this population history is consistent with the effects of forest fragmentation and expansion driven by Pleistocene climatic change. Alternatively, or additionally, historical human movement across the continent may have facilitated their recent spread and mixing. ABC analysis and haplotype networks support earlier inferences of a single out-of-Africa colonization event, while a cline of decreasing genetic diversity indicates that Ae. aegypti moved first from Africa to the Americas and then to Asia. ABC analysis was unable to verify this colonization route, possibly because the genetic signal of admixture obscures the true colonization pathway. By increasing genetic diversity and forming novel allelic combinations, divergence and historical admixture within Africa could have provided the adaptive potential needed for the successful worldwide spread of Ae. aegypti
    • …
    corecore