445 research outputs found

    What is functional mobility applied to Parkinson’s disease?

    Get PDF
    © 2018 – IOS Press and the authors. All rights reserved. This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).Although yet poorly defined and often misused, the concept of functional mobility has been used in research studies as a more global and ecological outcome of patients’ health status. Functional mobility is a person’s physiological ability to move independently and safely in a variety of environments in order to accomplish functional activities or tasks and to participate in the activities of daily living, at home, work and in the community. Parkinson’s disease (PD) has a direct impact on patients’ motor control and on mobility in general. Even with optimal medical management, the progression of PD is associated with mounting impairments at different levels of body function, causing marked limitations in a wide variety of activities, as well as a severe disability and loss of autonomy. Despite this, for everyday functioning PD patients need to have a good functional mobility that allow them to get around effortlessly in a reasonable amount of time to access to the same environments as others. This paper reviewed the concept of functional mobility applied to PD. This was done through an International Classification of Functioning and Disability (ICF) perspective. Recommendations to address the known factors that contribute to a poor functional mobility were outlined while suggestions for clinical practice and research were made.info:eu-repo/semantics/publishedVersio

    Protein Clearance Mechanisms of Alpha-Synuclein and Amyloid-Beta in Lewy Body Disorders

    Get PDF
    Protein clearance is critical for the maintenance of the integrity of neuronal cells, and there is accumulating evidence that in most—if not all—neurodegenerative disorders, impaired protein clearance fundamentally contributes to functional and structural alterations eventually leading to clinical symptoms. Dysfunction of protein clearance leads to intra- and extraneuronal accumulation of misfolded proteins and aggregates. The pathological hallmark of Lewy body disorders (LBDs) is the abnormal accumulation of misfolded proteins such as alpha-synuclein (Asyn) and amyloid-beta (Abeta) in a specific subset of neurons, which in turn has been related to deficits in protein clearance. In this paper we will highlight common intraneuronal (including autophagy and unfolded protein stress response) and extraneuronal (including interaction of neurons with astrocytes and microglia, phagocytic clearance, autoimmunity, cerebrospinal fluid transport, and transport across the blood-brain barrier) protein clearance mechanisms, which may be altered across the spectrum of LBDs. A better understanding of the pathways underlying protein clearance—in particular of Asyn and Abeta—in LBDs may result in the identification of novel biomarkers for disease onset and progression and of new therapeutic targets

    A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts

    Get PDF
    Many algorithms use 3D accelerometer and/or gyroscope data from inertial measurement unit (IMU) sensors to detect gait events (i.e., initial and final foot contact). However, these algorithms often require knowledge about sensor orientation and use empirically derived thresholds. As align ment cannot always be controlled for in ambulatory assessments, methods are needed that require little knowledge on sensor location and orientation, e.g., a convolutional neural network-based deep learning model. Therefore, 157 participants from healthy and neurologically diseased cohorts walked 5 m distances at slow, preferred, and fast walking speed, while data were collected from IMUs on the left and right ankle and shank. Gait events were detected and stride parameters were extracted using a deep learning model and an optoelectronic motion capture (OMC) system for reference. The deep learning model consisted of convolutional layers using dilated convolutions, followed by two independent fully connected layers to predict whether a time step corresponded to the event of initial contact (IC) or final contact (FC), respectively. Results showed a high detection rate for both initial and final contacts across sensor locations (recall ≥ 92%, precision ≥ 97%). Time agreement was excellent as witnessed from the median time error (0.005 s) and corresponding inter-quartile range (0.020 s). The extracted stride-specific parameters were in good agreement with parameters derived from the OMC system (maximum mean difference 0.003 s and corresponding maximum limits of agreement (−0.049 s, 0.051 s) for a 95% confidence level). Thus, the deep learning approach was considered a valid approach for detecting gait events and extracting stride-specific parameters with little knowledge on exact IMU location and orientation in conditions with and without walking pathologies due to neurological diseases

    Mobility Deficits Assessed With Mobile Technology: What Can We Learn From Brain Iron-Altered Animal Models?

    Get PDF
    Background: Recent developments in mobile technology have enabled the investigation of human movements and mobility under natural conditions, i.e., in the home environment. Iron accumulation in the basal ganglia is deleterious in Parkinson's disease (i.e., iron accumulation with lower striatal level of dopamine). The effect of iron chelation (i.e., re-deployment of iron) in Parkinson's disease patients is currently tested in a large investigator-initiated multicenter study. Conversely, restless legs syndrome (RLS) is associated with iron depletion and higher striatal level of dopamine. To determine from animal models which movement and mobility parameters might be associated with iron content modulation and the potential effect of therapeutic chelation inhuman. Methods: We recapitulated pathophysiological aspects of the association between iron, dopamine, and neuronal dysfunction and deterioration in the basal ganglia, and systematically searched PubMed to identify original articles reporting about quantitatively assessed mobility deficits in animal models of brain iron dyshomeostasis. Results: We found six original studies using murine and fly models fulfilling the inclusion criteria. Especially postural and trunk stability were altered in animal models with iron overload. Animal models with lowered basal ganglia iron suffered from alterations in physical activity, mobility, and sleep fragmentation. Conclusion: From preclinical investigations in the animal model, we can deduce that possibly also in humans with iron accumulation in the basal ganglia undergoing therapeutic chelation may primarily show changes in physical activity (such as daily "motor activity"), postural and trunk stability and sleep fragmentation. These changes can readily be monitored with currently available mobile technology

    What contributes most to the SPPB and its subscores in hospitalized geriatric patients: an ICF model-based approach

    Get PDF
    Methods Data were obtained from n = 397 patients (78 ± 7 years, 15 ± 7 ICD-11 diagnoses) on a geriatric ward at time of admission. Mobility was assessed using the Short Physical Performance Battery (SPPB) total score and gait, static balance and transfer subscores. Parameters from an extensive assessment including medical history, neuropsychological and motor examination, and questionnaires were assigned to the five components of the ICF model. Spearman's Correlation and multiple linear regression analyses were calculated to identify predictors for the SPPB total score and subscores. Results Use of walking aid, fear of falling (FOF, but not occurrence of previous falls), participation in society, ADL and grip strength were strongly associated with the SPPB total score and all subscores (p < .001). FOF and grip strength were significant predictors for the SPPB total score as well as for gait and transfer subscores. FOF also showed a strong association with the static balance subscore. The clinical parameters of the ICF model could only partially explain the variance in the SPPB total score (24%) and subscores (12-23%), with no parameter from the activities and participation component being significantly predictive. Conclusions FOF and reduced grip strength are associated with mobility deficits in a hospitalized geriatric cohort. Further research should focus on interventions to reduce FOF and increase muscle strength in geriatric patients. Moreover, there is a need for ICF-based assessments instruments (especially in the activities and participation components) that allow a holistic view on mobility and further daily life-relevant health aspects in geriatric patients

    Progressive Gait Deficits in Parkinson’s Disease: A Wearable-Based Biannual 5-Year Prospective Study

    Get PDF
    Background: Gait changes occur during all Parkinson’s disease (PD) stages and wearable sensor-derived gait parameters may quantify PD progression. However, key aspects that may qualify quantitative gait parameters as progression markers in PD remain elusive.Objectives: Longitudinal changes in gait parameters from a lower-back sensor under convenient and challenging walking conditions in early- and mid-stage PD patients (E-PD, M-PD) compared to controls were investigated.Methods: Normal- and fast-pace parameters (step: number, time, velocity, variability) were assessed every 6 months for up to 5 years in 22 E-PD (&lt;4 years baseline disease duration), 18 M-PD (&gt;5 years) and 24 controls. Parameter trajectories and associations with MDS-UPDRS-III were tested using generalized estimating equations.Results: Normal-pace step number (annual change in E-PD: 2.1%, Time∗Group: p = 0.001) and step time variability (8.5%, p &lt; 0.05) longitudinally increased in E-PD compared to controls (0.7%, -12%). For fast pace, no significant progression differences between groups were observed. Longitudinal changes in M-PD did not differ significantly from controls. MDS-UPDRS-III was largely associated with normal-pace parameters in M-PD.Conclusion: Wearables can quantify progressive gait deficits indicated by increasing step number and step time variability in E-PD. In M-PD, and for fast-pace, gait parameters possess limited potential as PD progression markers

    Reliability of IMU-Derived Temporal Gait Parameters in Neurological Diseases

    Get PDF
    Evaluating gait is part of every neurological movement disorder assessment. Generally, the physician assesses the patient based on their experience, but nowadays inertial measurement units (IMUs) are also often integrated in the assessment. Instrumented gait analysis has a longstanding tradition and temporal parameters are used to compare patient groups or trace disease progression over time. However, the day-to-day variability needs to be considered especially in specific patient cohorts. The aim of the study was to examine day-to-day variability of temporal gait parameters of two experimental conditions in a cohort of neurogeriatric patients using data extracted from a lower back-worn IMU. We recruited 49 participants (24 women (age: 78 years ± 6 years, BMI = 25.1 kg/m2 and 25 men (age: 77 years ± 6 years, BMI = 26.5 kg/m2 )) from the neurogeriatric ward. Two gait distances (4 m and 20 m) were performed during the first session and repeated the following day. To evaluate reliability, the Intraclass Correlation Coefficient (ICC2,k) and minimal detectable change (MDC) were calculated for the number of steps, step time, stride time, stance time, swing time, double limb support time, double limb support time variability, stride time variability and stride time asymmetry. The temporal gait parameters showed poor to moderate reliability with mean ICC and mean MDC95% values of 0.57 ± 0.18 and 52% ± 53%, respectively. Overall, only four out of the nine computed temporal gait parameters showed high relative reliability and good absolute reliability values. The reliability increased with walking distance. When only investigating steady-state walking during the 20 m walking condition, the relative and absolute reliability improved again. The most reliable parameters were swing time, stride time, step time and stance time. Study results demonstrate that reliability is an important factor to consider when working with IMU derived gait parameters in specific patient cohorts. This advocates for a careful parameter selection as not all parameters seem to be suitable when assessing gait in neurogeriatric patients

    Dual vs. Single Tasking During Circular Walking: What Better Reflects Progression in Parkinson's Disease?

    Get PDF
    Background and Aim: Reliable, valid and sensitive measures of dual-task-associated impairments in patients with Parkinson's disease (PD) may reveal progressive deficits unnoticed under single-task walking. The aim of this study was to quantitatively identify markers of progressive gait deficits in idiopathic PD while walking over a circular trajectory condition in single-task walking and in different dual-task conditions: (1) circular walking while checking boxes on a paper sheet as fast as possible and (2) circular walking while performing subtraction of 7 as fast as possible. In addition, we aimed to study the added value of dual-tasking assessment over single (circular) walking task assessment in the study of PD progression.Methods: The assessments were performed every 6 months over a (up to) 5 years period for 22 patients in early-stage PD, 27 patients in middle-stage PD and 25 healthy controls (HC). Longitudinal changes of 27 gait features extracted from accelerometry were compared between PD groups and HCs using generalized estimating equations analysis, accounting for gait speed, age, and levodopa medication state confounders when required. In addition, dual-task-interference with gait and cognitive performance was assessed, as well as their combination.Results: The results support the validity and robustness of some of the gait features already identified in our previous work as progression markers of the disease in single-task circular walking. However, fewer gait features from dual-task than from single-task assessments were identified as markers of progression in PD. Moreover, we did not clearly identify progressive worsening of dual-task-interference in patients with PD, although some group differences between early and middle stages of PD vs. the control group were observed for dual-task interference with the gait task and with the concurrent tasks.Conclusions: Overall, the results showed that dual-tasking did not have added value in the study of PD progression from circular gait assessments. Our analyses suggest that, while single-task walking might be sensitive enough, dual-tasking may introduce additional (error) variance to the data and may represent complex composite measures of cognitive and motor performance

    Connecting real-world digital mobility assessment to clinical outcomes for regulatory and clinical endorsement-the Mobilise-D study protocol

    Full text link
    BACKGROUND The development of optimal strategies to treat impaired mobility related to ageing and chronic disease requires better ways to detect and measure it. Digital health technology, including body worn sensors, has the potential to directly and accurately capture real-world mobility. Mobilise-D consists of 34 partners from 13 countries who are working together to jointly develop and implement a digital mobility assessment solution to demonstrate that real-world digital mobility outcomes have the potential to provide a better, safer, and quicker way to assess, monitor, and predict the efficacy of new interventions on impaired mobility. The overarching objective of the study is to establish the clinical validity of digital outcomes in patient populations impacted by mobility challenges, and to support engagement with regulatory and health technology agencies towards acceptance of digital mobility assessment in regulatory and health technology assessment decisions. METHODS/DESIGN The Mobilise-D clinical validation study is a longitudinal observational cohort study that will recruit 2400 participants from four clinical cohorts. The populations of the Innovative Medicine Initiative-Joint Undertaking represent neurodegenerative conditions (Parkinson's Disease), respiratory disease (Chronic Obstructive Pulmonary Disease), neuro-inflammatory disorder (Multiple Sclerosis), fall-related injuries, osteoporosis, sarcopenia, and frailty (Proximal Femoral Fracture). In total, 17 clinical sites in ten countries will recruit participants who will be evaluated every six months over a period of two years. A wide range of core and cohort specific outcome measures will be collected, spanning patient-reported, observer-reported, and clinician-reported outcomes as well as performance-based outcomes (physical measures and cognitive/mental measures). Daily-living mobility and physical capacity will be assessed directly using a wearable device. These four clinical cohorts were chosen to obtain generalizable clinical findings, including diverse clinical, cultural, geographical, and age representation. The disease cohorts include a broad and heterogeneous range of subject characteristics with varying chronic care needs, and represent different trajectories of mobility disability. DISCUSSION The results of Mobilise-D will provide longitudinal data on the use of digital mobility outcomes to identify, stratify, and monitor disability. This will support the development of widespread, cost-effective access to optimal clinical mobility management through personalised healthcare. Further, Mobilise-D will provide evidence-based, direct measures which can be endorsed by regulatory agencies and health technology assessment bodies to quantify the impact of disease-modifying interventions on mobility. TRIAL REGISTRATION ISRCTN12051706
    corecore