5,387 research outputs found
Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation.
Eosinophil accumulation is a prominent feature of allergic inflammatory reactions, such as those occurring in the lung of the allergic asthmatic, but the endogenous chemoattractants involved have not been identified. We have investigated this in an established model of allergic inflammation, using in vivo systems both to generate and assay relevant activity. Bronchoalveolar lavage (BAL) fluid was taken from sensitized guinea pigs at intervals after aerosol challenge with ovalbumin. BAL fluid was injected intradermally in unsensitized assay guinea pigs and the accumulation of intravenously injected 111In-eosinophils was measured. Activity was detected at 30 min after allergen challenge, peaking from 3 to 6 h and declining to low levels by 24 h. 3-h BAL fluid was purified using high performance liquid chromatography techniques in conjunction with the skin assay. Microsequencing revealed a novel protein from the C-C branch of the platelet factor 4 superfamily of chemotactic cytokines. The protein, eotaxin, exhibits homology of 53% with human MCP-1, 44% with guinea pig MCP-1, 31% with human MIP-1α, and 26% with human RANTES. Laser desorption time of flight mass analysis gave four different signals (8.15, 8.38, 8.81, and 9.03 kD), probably reflecting differential O-glycosylation. Eotaxin was highly potent, inducing substantial 111In-eosinophil accumulation at a 1-2-pmol dose in the skin, but did not induce significant 111In-neutrophil accumulation. Eotaxin was a potent stimulator of both guinea pig and human eosinophils in vitro. Human recombinant RANTES, MIP-1α, and MCP-1 were all inactive in inducing 111In-eosinophil accumulation in guinea pig skin; however, evidence was obtained that eotaxin shares a binding site with RANTES on guinea pig eosinophils. This is the first description of a potent eosinophil chemoattractant cytokine generated in vivo and suggests the possibility that similar molecules may be important in the human asthmatic lung
3D active stabilization for single-molecule imaging
A key part of any super-resolution technique involves accurately correcting for mechanical motion of the sample and setup during acquisition. If left uncorrected, drift degrades the resolution of the final reconstructed image and can introduce unwanted artifacts. Here, we describe how to implement active stabilization, thereby reducing drift to ~1 nm across all three dimensions. In this protocol, we show how to implement our method on custom and standard microscopy hardware. We detail the construction of a separate illumination and detection path, dedicated exclusively to acquiring the diffraction pattern of fiducials deposited on the imaging slide. We also show how to focus lock and adjust the focus in arbitrary nanometer step size increments. Our real-time focus locking is based on kHz calculations performed using the graphics processing unit. The fast calculations allow for rapid repositioning of the sample, which reduces drift below the photon-limited localization precision. Our approach allows for a single-molecule and/or super-resolution image acquisition free from movement artifacts and eliminates the need for complex algorithms or hardware installations. The method is also useful for long acquisitions which span over hours or days, such as multicolor super resolution. Installation does not require specialist knowledge and can be implemented in standard biological laboratories. The full protocol can be implemented within ~2 weeks
All soft contact lenses are not created equal
Soft contact lenses that have been prescribed by eye care practitioners are sometimes substituted for alternative lenses by unqualified, unregulated and sometimes even fully regulated lens suppliers, in the mistaken belief that there is essentially no difference between different soft lens types. This review considers the implications of inappropriately substituting soft contact lens types in terms of (a) lens properties: surface treatment, internal wetting agents, material, total diameter, back optic zone radius, thickness, edge profile, back surface design, optical design, power, colour (tint) and ultraviolet protection; and (b) lens usage: wearing modality (daily versus overnight wear) and replacement frequency. Potential aspects of patient dissatisfaction and adverse events when prescribed soft lenses are substituted for lenses with different properties or intended usage are considered. Substitution of 15 of the 16 lens properties considered (i.e. except for back surface design) was found to be related to at least one – and as many as six – potential sources of patient dissatisfaction and adverse ocular events. Contact lens are medical devices which are prescribed and fitted; they should never be substituted for another lens type in the absence of a new prescription further to a full finalised fitting, for the simple reason that all soft contact lenses are not created equal. A substituted lens may have properties that results in undesirable consequences in respect of vision, ocular health, comfort and cosmetic appearance, and may be incompatible with the lifestyle of the patient
Statistical predictions on the encapsulation of single molecule binding pairs into sized-dispersed nanocontainers
Single molecule experiments have recently attracted enormous interest. Many of these studies involve the encapsulation of a single molecule into nanoscale containers (such as vesicles, droplets and nanowells). In such cases, the single molecule encapsulation efficiency is a key parameter to consider in order to get a statistically significant quantitative information. It has been shown that such encapsulation typically follows a Poisson distribution and such theory of encapsulation has only been applied to the encapsulation of single molecules into perfectly sized monodispersed containers. However, experimentally nanocontainers are usually characterized by a size distribution, and often just a single binding pair (rather than a single molecule) is required to be encapsulated. Here the use of Poisson distribution is extended to predict the encapsulation efficiency of two different molecules in an association equilibrium. The Poisson distribution is coupled with a log-normal distribution in order to consider the effect of the container size distribution, and the effect of adsorption to the container is also considered. This theory will allow experimentalists to determine what single molecule encapsulation efficiency can be expected as a function of the experimental conditions. Two case studies, based on experimental data, are given to support the theoretical predictions
Tumor taxonomy for the developmental lineage classification of neoplasms
BACKGROUND: The new "Developmental lineage classification of neoplasms" was described in a prior publication. The classification is simple (the entire hierarchy is described with just 39 classifiers), comprehensive (providing a place for every tumor of man), and consistent with recent attempts to characterize tumors by cytogenetic and molecular features. A taxonomy is a list of the instances that populate a classification. The taxonomy of neoplasia attempts to list every known term for every known tumor of man. METHODS: The taxonomy provides each concept with a unique code and groups synonymous terms under the same concept. A Perl script validated successive drafts of the taxonomy ensuring that: 1) each term occurs only once in the taxonomy; 2) each term occurs in only one tumor class; 3) each concept code occurs in one and only one hierarchical position in the classification; and 4) the file containing the classification and taxonomy is a well-formed XML (eXtensible Markup Language) document. RESULTS: The taxonomy currently contains 122,632 different terms encompassing 5,376 neoplasm concepts. Each concept has, on average, 23 synonyms. The taxonomy populates "The developmental lineage classification of neoplasms," and is available as an XML file, currently 9+ Megabytes in length. A representation of the classification/taxonomy listing each term followed by its code, followed by its full ancestry, is available as a flat-file, 19+ Megabytes in length. The taxonomy is the largest nomenclature of neoplasms, with more than twice the number of neoplasm names found in other medical nomenclatures, including the 2004 version of the Unified Medical Language System, the Systematized Nomenclature of Medicine Clinical Terminology, the National Cancer Institute's Thesaurus, and the International Classification of Diseases Oncolology version. CONCLUSIONS: This manuscript describes a comprehensive taxonomy of neoplasia that collects synonymous terms under a unique code number and assigns each tumor to a single class within the tumor hierarchy. The entire classification and taxonomy are available as open access files (in XML and flat-file formats) with this article
Detection of catalytic intermediates at an electrode surface during carbon dioxide reduction by an earth-abundant catalyst
The electrocatalytic reduction of CO2 offers a sustainable route to the many carbon fuels and feedstocks that society relies on. [fac-Mn(bpy)(CO)3Br] (bpy, 2,2-bipyridine) is one of the most promising and intensely studied CO2 reduction electrocatalysts. However, the catalytic mechanism remains experimentally unproven and many key intermediates of the prototypical catalyst have not been observed. Here we report the use of vibrational sum-frequency generation spectroscopy to study the catalytic intermediates during CO2 reduction in situ at the electrode surface. We explore the complex applied-potential and acid-dependent mechanistic pathways and provide evidence of the theoretically derived mechanisms. Demonstrating the ability to detect the key species that are only transiently present at the electrode surface is important as the need for an improved mechanistic understanding is a common theme throughout the field of molecular electrocatalysis
Superyachts could support satellite ocean colour validation
This is the final version. Available on open access from Frontiers Media via the DOI in this recordData availability statement:
The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://seabass.gsfc.nasa.gov/experiment/SUPERYACHT_SCIENCE; and https://oceandata.sci.gsfc.nasa.gov/directdataaccess/.Visible spectral radiometry of seawater, often referred to as ocean colour, from space, provides a synoptic view of surface phytoplankton, and other optically-active constituents, at high temporal resolution, that is unsurpassed by any other technology. Yet, in-situ observations of ocean colour are critical to the success of the satellite, tracking the calibration of the radiometers and validating atmospheric correction algorithms. Owing to the high cost of commercial field radiometers, as well as the high costs associated with ocean-based field work, ocean colour scientists are plagued by a sparsity of high quality in-situ radiometric observations, particularly in remote regions. In this perspective article, we highlight potential to increase the number of in-situ observations of ocean colour by harnessing superyachts. Using openly-available data processing software, we show that automated ocean colour data collected using a superyacht can be used for the validation of an ocean colour satellite, with comparable results to traditional validation studies. Reaching out to wealthy citizen scientists may help fill gaps in our ability to monitor the colour of the ocean.UKRISimons Foundatio
- …