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ABSTRACT 23 

Background: Emerging evidence suggests that maternal folate status can impact cognitive 24 

development in childhood. Folate-dependent DNA methylation may provide a biological 25 

mechanism to link folate status during pregnancy with cognition in the offspring.  26 

Objective: The objective was to investigate the effect of continued folic acid (FA) 27 

supplementation beyond the first trimester of pregnancy on DNA methylation in cord blood 28 

of epigenetically-controlled genes related to brain development and function.  29 

Design: Using available cord blood samples (n = 86) from the Folic Acid Supplementation in 30 

the Second and Third Trimesters (FASSTT) trial in pregnancy, we applied pyrosequencing 31 

techniques to analyze cord blood DNA at nine candidate loci known to be regulated by 32 

methylation including some previously implicated in observational studies: the widely-33 

dispersed retrotransposon LINE-1 and eight single-copy loci (RBM46, PEG3, IGF2, GRB10, 34 

BDNF, GRIN3B, OPCML and APC2).  35 

Results: The newborns of mothers who received FA (400 µg/d) during pregnancy, compared 36 

to placebo, had significantly lower overall DNA methylation levels at LINE-1 (57.2 ± 2.1 % 37 

vs 56.3 ± 1.7 %; P = 0.024), IGF2 (51.2 ± 5.1 % vs 48.9 ± 4.4 %; P = 0.021) and BDNF (3.1 38 

± 0.8 % vs 2.7 ± 0.7 %; P = 0.003). The effect of FA treatment on DNA methylation was 39 

significant only in female offspring for IGF2 (P = 0.028) and only in males for BDNF (P = 40 

0.012). For GRB10 and GRIN3B, we detected no effect on overall methylation, however, 41 

individual CpG sites showed significant DNA methylation changes in response to FA.  42 

Conclusions: Continued supplementation with FA through trimesters 2 and 3 of pregnancy 43 

results in significant changes in DNA methylation in cord blood of genes related to brain 44 

development. The findings offer a potential biological mechanism linking maternal folate 45 
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status with neurodevelopment of the offspring, but this requires further investigation using a 46 

genome-wide approach.  47 

The FASSTT trial is registered at: www.isrctn.com/ISRCTN19917787. 48 

 49 
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INTRODUCTION  51 

 Periconceptional folic acid (FA) supplementation has a proven effect in preventing the 52 

first occurrence (1) and recurrence (2) of neural tube defects (NTD). As a result, women 53 

planning a pregnancy are recommended to take 400 μg/d FA from preconception until the end 54 

of the first trimester (3). Apart from preventing NTD in early pregnancy, emerging evidence 55 

shows that maternal folate status may have other roles in offspring health, particularly in 56 

relation to cognitive development in childhood (4, 5). Several observational studies have 57 

identified a potential role of maternal folate status during pregnancy on the cognitive 58 

performance of offspring (6, 7, 8). We previously investigated the children of mothers who 59 

had participated in a randomized trial in pregnancy of Folic Acid Supplementation in the 60 

Second and Third Trimesters (FASSTT) (9) and, in a preliminary publication, found 61 

beneficial effects of FA on cognition in children at age 3 and 6 years (10). Although, the 62 

precise biological mechanism explaining the effect of FA during pregnancy on 63 

neurodevelopment of the child is unknown, it must involve the essential role of folate in one-64 

carbon metabolism, whereby one-carbon units are transferred and utilized in critical pathways 65 

involving amino acid metabolism, biosynthesis of purines and pyrimidines and the 66 

methylation of biological substrates including DNA.  67 

Epigenetics refers to heritable changes in gene expression, which occur without 68 

altering the underlying DNA sequence, often via histone modification, RNA interference or 69 

DNA methylation (11).  DNA methylation is the most widely studied epigenetic mechanism 70 

for gene regulation and is dependent upon the supply of methyl donors provided by folate and 71 

the metabolically-related B vitamins via the formation of S-adenosylmethionine (SAM) 72 

within one-carbon metabolism (5). SAM is the universal methyl donor required for the 73 

methylation of numerous endogenous substances and the maintenance of DNA methylation 74 

(12). Most previous epigenetic studies in humans have used a candidate gene approach to link 75 
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maternal status of folate or other one-carbon nutrients with offspring DNA methylation, and 76 

reported significant associations at specific loci, including the high copy-number 77 

retrotransposon LINE-1, the imprinted genes IGF2 and PEG3 and the metastable epiallele 78 

RBM46 (13,14). As shown by ourselves (15) and others (16), these imprinted genes and 79 

metastable epiallele have the advantage of showing equivalent methylation levels across 80 

various tissues and are potentially responsive to early-life nutritional inputs. In addition, a 81 

meta-analysis of two epigenome-wide association studies (EWAS) investigating the impact of 82 

maternal folate on DNA methylation identified 48 CpGs showing genome-wide significance 83 

(after Bonferroni correction) including clusters of sites at APC2 and OPCML (17).  Previous 84 

studies in the area, however, are observational and thus, by design, cannot provide evidence 85 

of a direct link between maternal folate during pregnancy and DNA methylation effects in 86 

offspring. Apart from the aforementioned genes identified in previous studies, three other 87 

brain related targets known to be regulated by methylation and not previously investigated in 88 

relation to folate, could be of potential interest.  These are: GRB10, an imprinted gene 89 

paternally expressed in the brain (18); GRIN3B, a transiently imprinted gene regulated by 90 

methylation and important for neuronal plasticity during development (19) and BDNF, an 91 

important neurotrophic factor frequently associated with epigenetic modulation (20). 92 

Therefore, the aim of this study was to investigate the effect of FA supplementation 93 

during trimesters 2 and 3 on DNA methylation in cord blood of key epigenetically-controlled 94 

genes, many related to brain development and function.  95 

 96 

METHODS 97 

Participants and Study Design 98 

Samples for the current investigation were made available from a previous double-99 

blinded randomized controlled trial (RCT) in pregnancy of Folic Acid Supplementation 100 
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during the Second and Third Trimesters (FASSTT) conducted in 2005-2006 (Figure 1). The 101 

methodological details of the FASSTT trial have been described in full elsewhere (9). In 102 

summary, healthy pregnant women aged 18-35 y with a singleton pregnancy were recruited at 103 

the 14th gestational week from antenatal clinics at the Causeway Hospital, Coleraine, Northern 104 

Ireland. Women included in the study had taken FA supplements at the recommended dose 105 

(400µg/d) during the first trimester of pregnancy. Women were excluded from the trial if they 106 

had not taken FA during the first trimester or had taken FA at a dose >400 µg/d, were taking 107 

medications known to interfere with B-vitamin metabolism, had undergone in vitro 108 

fertilization treatment, or had a previous NTD-affected pregnancy. Although current practice 109 

in Northern Ireland (UK) is to recommend FA supplements from pre-conception to the end of 110 

the first trimester of pregnancy only, we also excluded from participation any woman who 111 

intended to continue taking FA throughout pregnancy. On recruitment, information on 112 

micronutrient supplementation was collected, with a particular emphasis on the dose and 113 

timing of use of FA supplements. 114 

As previously described, for randomization purposes, FASSTT trial participants at the 115 

beginning of the second trimester were stratified into tertiles of homocysteine concentrations 116 

(from the blood sample taken at recruitment), and women in each stratum were then randomly 117 

assigned to receive either 400 µg FA/d or placebo from the 14th gestational week until the end 118 

of pregnancy (9). The randomization process was carried out by a staff member who was not 119 

involved in the study, and this approach ensured that both researchers and participants were 120 

blinded to the treatment group allocations. Maternal non-fasting blood samples were taken at 121 

the 14th (pre-intervention) and 36th (representative of post-intervention) gestational week, with 122 

corresponding cord blood samples collected at delivery. The birth weight, birth length, head 123 

circumference, mode of delivery and Apgar score for the newborns were collected after 124 

delivery. Ethical approval was obtained from the Office for Research Ethics Committees 125 
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Northern Ireland (05/Q2008/21), and all participants gave written informed consent at the 126 

time of recruitment. 127 

B-vitamin Status Biomarkers 128 

Upon collection, all blood samples were kept at 4℃. They were subsequently 129 

processed within 4 h (apart from cord blood samples which were processed within 24 h of 130 

collection) and stored at -80°C until required for analysis. Serum and red blood cell (RBC) 131 

folate (21) and serum vitamin B-12 (22) were measured by microbiological assay using 132 

established methods. Samples were analyzed blind for all assays, and quality control was 133 

carried out by repeated analysis of stored batches of pooled samples covering a wide range of 134 

values. Intra- and interassay CVs were ≤8.2% for RBC folate and ≤10.4% for serum vitamin 135 

B-12. Methylenetetrahydrofolate reductase (MTHFR) 677C>T genotype was identified by 136 

using polymerase chain reaction amplification followed by HinF1 restriction digestion (23).  137 

DNA Methylation Analysis 138 

Table 1 summarizes the candidate genes selected for methylation analysis and their 139 

function.  For the current analysis, genomic DNA was extracted from cord blood using the 140 

QiAMP DNA Blood Mini kit (Qiagen, Crawley, UK) according to the manufacturer’s 141 

instructions. The quality of DNA was evaluated via gel electrophoresis, and then quantified 142 

using the Nanodrop 2000 spectrophotometer (Labtech International, Ringmer, UK). The DNA 143 

was bisulfite converted using the EpiTect Bisulfite Kit (Qiagen, Crawley, UK) according to 144 

the manufacturer’s instructions. Pyrosequencing assays were designed in-house for all genes 145 

using PyroMark Assay Design Software 2.0 (Qiagen, Crawley, UK) according to previously 146 

published primer sets/regions: Long-interspersed nuclear element-1 (LINE-1) (24), RNA 147 

binding motif protein-46 (RBM46) (14), Paternally-expressed gene 3 (PEG3) (25), Insulin-148 

like growth factor-2 (IGF2) (26), Growth Factor Receptor Bound Protein 10 (GRB10) (27), 149 
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Glutamate Ionotropic Receptor NMDA Type Subunit 3B (GRIN3B) (15, 19), Opioid Binding 150 

Protein/Cell Adhesion Molecule-Like (OPCML) and Adenomatosis Polyposis Coli-2 (APC2) 151 

(17). Brain-derived neurotrophic factor (BDNF) was purchased as a commercially available 152 

assay (Qiagen, Crawley, UK).  153 

Pyrosequencing analysis was carried out in duplicate and overall methylation was 154 

obtained from 5-17 CpG sites for each gene (Supplemental Table 1). Further information on 155 

chromosomal position, primer sequences and number of CpG sites analyzed are detailed in 156 

Supplemental Table 1. Bisulfite converted DNA was amplified using the PyroMark PCR kit 157 

(Qiagen, Crawley, UK) with aforementioned primer sets, conditions were: 15 minutes at 158 

95°C, followed by 45 cycles of 30 seconds at 94°C, 30 seconds at 56°C and 30 seconds at 159 

72°C, with final elongation for 10 minutes at 72°C. Products were verified via gel 160 

electrophoresis prior to pyrosequencing analysis, which was performed using the PyroMark 161 

Q24 Pyrosequencing platform as per manufacturer’s recommendations (Qiagen, Crawley, 162 

UK). 163 

Dietary Analysis 164 

Maternal dietary information was collected during the second trimester of pregnancy 165 

using a 4-d food diary in combination with a food-frequency questionnaire, a method 166 

previously validated for folate and related B-vitamin intakes against biomarker values, as 167 

detailed elsewhere (31). Dietary analysis was carried out using the nutritional software 168 

package WISP version 3.0 (Tinuviel Software), which had been customized to generate 169 

separate values for naturally occurring food folate and FA added to foods; the separate values 170 

were then used to calculate dietary folate equivalents, as previously described (31).   171 

Statistical Analysis  172 

Statistical analysis was performed using the Statistical Package for the Social Sciences 173 

software (SPSS) (Version 22.0; SPSS UK Ltd., Chertsey, UK). The results are expressed as 174 
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mean ± SD, except where otherwise stated. For normalization purposes, variables were log 175 

transformed before analysis, as appropriate. Differences between treatment groups for 176 

participant characteristics were assessed using an independent t test for continuous variables 177 

or chi-square for categorical variables. Differences in gene-specific DNA methylation 178 

between the two treatment groups were assessed by analysis of covariance (ANCOVA) with 179 

adjustment for confounders previously reported to influence DNA methylation such as 180 

maternal age, smoking during pregnancy, caesarean section, baby’s sex and gestational 181 

weight. Multiple linear regression analysis was used to examine the maternal and neonatal 182 

predictors of gene-specific DNA methylation in cord blood (dependent variable) controlling 183 

for common confounders. P<0.05 was considered significant.   184 

 185 

RESULTS 186 

From the total FASSTT trial sample of 119 participants, 86 cord blood samples were 187 

available for the current analysis (9). A comparison of maternal folate status post-intervention 188 

between the sub-cohort with (n = 86) versus without (n = 33) available cord blood, showed no 189 

significant differences in mean (± SD) RBC folate concentrations (1270 ± 611 nmol/L vs 1279 190 

± 820 nmol/L; P = 0.942), ensuring that there was no selection bias in the sub-cohort who 191 

provided cord blood. 192 

At baseline (14th GW), there were no detectable differences between the treatment 193 

groups in general maternal or neonatal characteristics, serum or RBC folate concentrations or 194 

dietary folate (Table 2). As a result of treatment with FA during trimesters 2 and 3, maternal 195 

serum and RBC folate were significantly increased. Cord serum and RBC folate 196 

concentrations were also significantly higher in infants of mothers supplemented with FA 197 

compared with those from the placebo mothers. As expected, maternal RBC folate (at the 36th 198 

GW) was highly correlated with cord RBC folate (r = 0.619; P = <0.001; data not shown).  199 
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DNA methylation levels of the investigated genes in cord blood samples are presented 200 

in Figure 2. The results showed significantly lower overall DNA methylation levels at LINE-201 

1, IGF2 (Figure 2) and BDNF in the offspring of mothers who received FA treatment 202 

compared to placebo during pregnancy (BDNF: Placebo 3.1 ± 0.08 % vs FA 2.7 ± 0.07 %; P 203 

= 0.003; data not shown), after adjustment for maternal age, smoking during pregnancy, 204 

caesarean section, baby’s sex and birth weight. The effect of FA treatment on DNA 205 

methylation was however significant only in female offspring for IGF2 and only in males for 206 

BDNF (Table 3). No other genes showed significant treatment effects for overall DNA 207 

methylation levels. When examined separately, individual CpG sites reflected the overall 208 

DNA methylation lowering effect of FA found with the complete loci, apart from GRB10 209 

CpG 3 where FA supplementation resulted in significantly higher DNA methylation (Table 210 

3). 211 

Multiple linear regression analysis was conducted on the whole cohort (placebo and 212 

FA treated groups combined) in order to identify the maternal and neonatal determinants of 213 

DNA methylation in cord blood (Table 4). Maternal FA treatment was significantly 214 

associated with offspring DNA methylation at LINE-1, IGF2 and BDNF genes, whereas 215 

caesarean section was a determinant of LINE-1 and BDNF methylation. Vitamin B12 216 

concentration in cord (but not maternal) blood was significantly associated with offspring 217 

IGF2 methylation. Neither maternal age nor smoking during pregnancy was significantly 218 

related to DNA methylation in the cord blood of any genes examined.  219 

 220 

DISCUSSION 221 

This is the first randomized trial of FA supplementation during pregnancy to examine 222 

DNA methylation levels in cord blood at a number of important candidate genes, some 223 

previously associated with brain development and function. The results showed significantly 224 
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lower DNA methylation levels of specific genes, IGF2, BDNF and LINE-1, in cord blood 225 

from mothers who received FA supplementation compared with placebo during the second 226 

and third trimesters of pregnancy. In addition, sex-specific differences in the response to FA 227 

were observed in offspring DNA methylation of IGF2 and BDNF. Not only does the current 228 

study present data on relevant genes not previously investigated, but because of the 229 

randomized trial design, the findings can clarify the nature of the relationship between 230 

maternal folate and offspring DNA methylation as reported in previous observational studies. 231 

The significant effect of folate during pregnancy on gene-specific DNA methylation in 232 

cord blood shown here is in broad agreement with the findings of two observational studies 233 

(13,17). The first of these was a large cohort study (n = 913) that found lower methylation in 234 

cord blood for both LINE-1 and PEG3, but higher methylation in IGF2, in women who 235 

reported using FA supplements after the 12th GW of pregnancy (13). Our data showing 236 

significantly lower LINE-1 methylation in response to FA intervention supports this 237 

previously reported relationship with maternal folate; however, our results in relation to the 238 

effect of FA on PEG3 (i.e. no methylation change) and IGF2 (i.e. decrease in methylation) 239 

differ from these earlier observations (13). Of perhaps greater relevance, our results are in 240 

good agreement with the findings of an epigenome-wide meta-analysis (n = 1988) which 241 

found that with increasing maternal folate concentrations (as measured in mid pregnancy; 13th 242 

to 18th GW), there were more CpGs with significantly decreased methylation (416 or 94%) 243 

than those with increased methylation (27 or 6%) (17). Likewise, we showed that in response 244 

to FA intervention during a similar period of pregnancy, more CpG sites have decreases than 245 

increases in methylation at the single-copy loci and at LINE-1, which indicates a genome-246 

wide methylation decrease, since there are >500,000 copies of this element across the genome 247 

(32). Taken together, the current and earlier evidence (17) strongly suggests that the overall 248 

effect of maternal folate is to lower, not increase, DNA methylation. The latter report found 249 
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that the largest number of statistically significant CpG sites were within the APC2 gene 250 

(expressed in fetal and adult brain) and the OPCML gene (17). Our results, somewhat 251 

unexpectedly however, showed no significant effect of maternal FA supplementation on DNA 252 

methylation for either APC2 or OPCML (at any CpG sites investigated), an inconsistency that 253 

may relate to differences in the selection of specific CpG sites or to study design differences. 254 

Furthermore, time of sampling for maternal folate measurement was not directly comparable, 255 

with blood samples collected on either the 13th or 18th GW in the previous study (17) whereas 256 

blood samples in the current study represented before and after intervention with FA over 22 257 

weeks of pregnancy from the 14th GW. 258 

The current and aforementioned studies relate to mid-pregnancy onwards, whereas 259 

early pregnancy is considered a sensitive period of plasticity in fetal developmental 260 

programming and has thus been of interest for several epigenetic studies of maternal diet and 261 

offspring DNA methylation in specific genes (5). One such study, showing that maternal 262 

periconceptional FA use (as reported by mothers) was associated with increased methylation 263 

of IGF2 (by 4.5%) in the offspring when measured at 17 months old (33), is at odds with the 264 

current results showing a decrease at this locus in response to FA intervention. In addition, 265 

one notable previous study conducted in Gambian women reported that the season of 266 

conception (which reflects variability in nutrient supply) can influence DNA methylation 267 

patterns of the RBM46 gene in the offspring at 2-8 months (14). In contrast, the current study 268 

found no significant effect in offspring RBM46 methylation in response to FA during 269 

trimesters 2 and 3 of pregnancy. The reason for these inconsistencies are unclear, but may 270 

relate to the fact that compared with the current RCT which investigated the effect of FA 271 

administered from the 14th GW to the end of pregnancy, the latter studies were observational 272 

(14, 33) and focused on the periconceptional phase of pregnancy. In addition, the DNA 273 

methylation effects observed in these previous studies were examined up to 17 months after 274 
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birth, a period during which factors other than maternal folate during pregnancy may have 275 

influenced the results. The totality of evidence suggests that there are different windows of 276 

susceptibility to maternal changes in the folate-dependent one-carbon pathway, and therefore 277 

periods beyond periconception may have important roles in influencing epigenetic changes in 278 

the offspring. 279 

Although significant, the offspring DNA methylation changes in response to maternal 280 

FA treatment found here are small. The magnitude of change we showed is however in good 281 

agreement with our previous studies showing that small changes affected by drug treatment 282 

can cause transcriptional alterations including at imprinted genes (15, 19).  Additionally, the 283 

small changes that we observed may lead to an altered balance at imprinted loci globally (34). 284 

Like the current study, previous studies have also reported sex-specific differences in DNA 285 

methylation in offspring in response to nutrition. During the Dutch Hunger Winter, when 286 

there was a reduced supply of essential nutrients including folate, IGF2R methylation was 287 

found to be higher by 2.6% in males, whereas DNA methylation of LEP, IL10 and APOC1 288 

was lower by 1.5-2.9%, compared with female offspring (35). Furthermore, periconceptional 289 

micronutrient supplementation of Gambian women was found to lower offspring methylation 290 

in males only for GTL2-DMR_2 (by 6.5%) and in females only for IGF2R-DMR (by 8.6%) 291 

(36). Likewise, the current results showed sex-specific effects of FA treatment for certain 292 

genes, with the reduction in methylation found to be significant in female (for IGF2) or in 293 

male (for BDNF) offspring only. The findings in the current study of sex-differences in DNA 294 

methylation in IGF2 and BDNF in response to FA in pregnancy may be related to the fact that 295 

they are considered estrogen-responsive genes (37, 38), but the mechanisms underlying these 296 

sex-specific effects shown here and elsewhere remain to be elucidated. 297 

Apart from maternal FA treatment, vitamin B12 status and caesarean section delivery 298 

were found to be significant predictors of gene-specific DNA methylation in the offspring 299 
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when regression analysis was conducted on the whole cohort (placebo and FA treated groups 300 

combined). After adjustment for covariates, our results showed that increasing cord blood 301 

vitamin B12 concentration was associated with decreasing IGF2 methylation. The finding that 302 

vitamin B12 may also influence DNA methylation in a similar way to folate is not surprising 303 

as it acts synergistically with folate within the one-carbon metabolic cycle and both vitamins 304 

are required for the generation of SAM (12). Therefore, although the current study focused on 305 

the effects of intervention with FA during pregnancy, our regression results suggest a 306 

mechanism whereby vitamin B12 status during pregnancy may also have a role in influencing 307 

DNA methylation in the offspring. In relation to caesarean section, the current results are in 308 

line with previous evidence that DNA methylation is higher in infants delivered by caesarean 309 

section than by vaginal delivery (39), an effect that may be owing to maladaptive perinatal 310 

stress associated with this type of delivery.  311 

The main strength of this study is that it is a randomized trial and therefore has the 312 

ability to investigate causal links between maternal FA intervention and DNA methylation of 313 

the offspring. However, this study was not without limitations. The candidate gene approach 314 

means that whilst specific genes of potential interest were identified, other genes and CpG 315 

sites not investigated may have been affected by FA supplementation during pregnancy. In 316 

addition, as per the design of the FASSTT trial, whereby participants were included only if 317 

they had taken FA during the first trimester (9), all women received FA periconceptionally 318 

and therefore no conclusions can be made as regards FA responsive epigenetic effects at this 319 

early stage of pregnancy. Finally, since neural tissue could not be obtained, we cannot 320 

exclude the possibility that the DNA methylation changes we observed in blood are not 321 

reflected in the brain, although methylation at imprints (16) and many of the other loci 322 

investigated (12-16, 24-27) are known to be similar across different tissues.  323 
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In conclusion, the current study presents the first evidence from an RCT that 324 

continued FA supplementation after the first trimester of pregnancy affects offspring DNA 325 

methylation of specific genes, including those related to offspring brain. DNA methylation 326 

may thus offer a potential biological mechanism linking maternal folate status with offspring 327 

neurodevelopment. This area of research is still in its infancy and much remains unknown as 328 

to how an individual’s DNA methylation profile is established during early development, the 329 

contributing factors and the long-term health effects. Future studies using an EWAS approach 330 

will be necessary to more fully explore the epigenetic mechanisms explaining the impact of 331 

maternal FA supplementation on offspring cognitive health.  332 
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TABLE 1  

Candidate genes for methylation analysis and their function  

Gene Gene Description Function Reference  

LINE-1 Long interspersed nuclear 

element-1 

 

Highly repeated retrotransposon thus surrogate marker for global DNA methylation.  Beck et al. 2011 (28) 

 

RBM46 RNA Binding Motif Protein 

46 

Metastable epiallele variably expressed due to epigenetic modifications established 

during early development. 

Dominguez-Salas et al. 2014 

(14) 

 

PEG3 Paternally Expressed Gene 3 

 

Maternally imprinted gene implicated in placental development p53-mediated 

apoptosis. 

 

He & Kim. 2014 (29) 

 

IGF2 Insulin Like Growth Factor 2 Maternally imprinted gene required for development and growth.  Chao & D’Amore. 2008 (30) 

 

GRB10 Growth Factor Receptor 

Bound Protein 10 

 

Growth factor receptor-binding protein that both interacts with insulin-like growth-

factor receptors in embryo and mediates social behavior in adult.  

Garfield et al. 2011 (18) 

 

BDNF Brain-Derived Neurotrophic 

Factor 

 

Neurotrophic factor, promotes neuron growth, maturation and survival, shows frequent 

epigenetic alteration. 

Roth & Sweatt. 2011 (20) 

 

GRIN3B Glutamate Ionotropic 

Receptor NMDA Type 

Subunit 3B 

 

cAMP signaling pathway, NMDA receptor found primarily in motor neurons. Irwin et al. 2014 (19) 

 

 

OPCML Opioid Binding Protein/ Cell 

Adhesion Molecule-Like 

 

Associated with neurocognitive conditions. Joubert et al. 2016 (17) 

 

 

APC2 Adenomatosis Polyposis Coli 

2 

Regulation of Wnt signaling pathway. Joubert et al. 2016 (17) 
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TABLE 2 

General characteristics of mother and offspring participants from the FASSTT Trial1 

 Placebo (n = 45) Folic Acid (n = 41) P value1 

Maternal characteristics2    

Age (y) 28.9 ± 3.5 29.4 ± 3.9 0.513 

BMI (kg/m2) 25.2 ± 3.9 24.9 ± 4.6 0.768 

Smoker n (%) 8 (18) 6 (15) 0.693 

Gestation at baseline (wk) 13.7 ± 2.2 14.1 ± 2.4 0.432 

Duration of FA use at baseline (wk) 14.4 ± 10.1 11.9 ± 6.8 0.175 

Parity (n) 1.0 ± 1.1 1.0 ± 1.0 0.915 

Caesarean section n (%) 11 (24) 10 (24) 0.995 

MTHFR 677TT genotype n (%) 5 (11) 2 (5) 0.291 

Dietary Intakes    

Energy (MJ/d) 8.170 ± 1.717 7.732 ± 1.595 0.280 

Dietary Folate Equivalents (µg/d) 364 ± 172 387 ± 152 0.582 

Vitamin B12 (µg/d) 4.1 ± 1.9 3.9 ± 3.9 0.791 

B-vitamin Biomarkers    

Preintervention (14 GW)    

Serum folate (nmol/L) 48.8 ± 19.8 45.8 ± 19.5 0.469 

RBC folate (nmol/L) 1185 ± 765 1181 ± 649 0.978 

Serum B12 (pmol/L) 224 ± 79 217 ± 79 0.601 

Postintervention (36 GW)3    

Serum folate (nmol/L) 23.6 ± 17.9 46.5 ± 24.8 <0.001 

RBC folate (nmol/L) 991 ± 404 1556 ± 658 <0.001 

Serum B12 (pmol/L) 168 ± 51 157 ± 60 0.229 

Neonatal characteristics    

Gestational age (wk) 40.1 ± 1.3 40.0 ± 1.1 0.540 

Sex, Male n (%) 22 (49) 22 (54) 0.659 

Birth weight (g) 3610 ± 475  3557 ± 464 0.601 

Birth length (cm) 51.5 ± 2.6 51.1 ± 2.2 0.499 

Head circumference (cm) 34.9 ± 1.2 34.8 ± 1.4 0.907 

Apgar score at 1 min 8.4 ± 1.1 8.6 ± 0.6 0.269 

Apgar score at 5 min 8.9 ± 0.4 9.0 ± 0.3 0.220 

Breastfed n (%) 15 (33) 14 (34) 0.240 

MTHFR 677TT genotype n (%) 6 (13) 4 (10) 0.605 

Cord Blood B-vitamin Biomarkers    

Serum folate (nmol/L) 68.3 ± 24.8 91.7 ± 36.7 0.004 

RBC folate (nmol/L) 1518 ± 597 1877 ± 701 0.024 

Serum B12 (pmol/L) 276 ± 155 251 ± 107 0.776 
1Differences between groups were assessed using an independent t test (continuous variables) or chi-

square test (categorical variables). Values expressed as means ± SD except where otherwise stated. 

P<0.05 was considered significant. 
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2Maternal characteristics assessed at the 14th gestational week (pre-intervention) unless where 

otherwise stated. 
3Postintervention refers to 36th gestational week.  

Abbreviations: FASSTT, Folic Acid Supplementation in the Second and Third Trimesters; GW, 

gestational week RBC, red blood cell. 
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TABLE 3 

CpG site-specific DNA methylation (LINE-1, IGF2, BDNF, GRB10 and GRIN3B) in cord blood by 

maternal treatment group1 

 Genomic location Placebo (n = 45) Folic Acid (n = 41) P value1 

Maternal RBC folate status (36 GW; nmol/L) 991 ± 404 1556 ± 658 <0.001 

Cord RBC folate status (nmol/L) 1518 ± 597 1877 ± 701 0.024 

Cord DNA methylation (%)    

LINE-12  Promoter    

CpG 1  83.5 ± 4.7 83.6 ± 3.9 0.679 

CpG 2  62.8 ± 3.9 59.9 ± 4.2 0.002 

CpG 3  37.1 ± 2.4 36.4 ± 3.5 0.301 

CpG 4  20.4 ± 3.0 18.9 ± 3.0 0.045 

CpG 5  57.9 ± 4.4 57.3 ± 4.3 0.489 

CpG 6  81.6 ± 2.7 81.7 ± 3.1 0.933 

Overall (all CpG sites) 57.2 ± 2.1 56.3 ± 1.7 0.024 

Males 57.0 ± 2.3 56.5 ± 1.8 0.067 

Females 57.4 ± 2.0 56.1 ± 1.7 0.038 

IGF2  DMR 2 (somatic)3    

CpG 1  43.4 ± 3.7 40.0 ± 5.2 0.001 

CpG 2  47.1 ± 6.5 43.7 ± 6.5 0.017 

CpG 3  54.4 ± 5.9 52.7 ± 5.7 0.102 

CpG 4  50.0 ± 5.8 48.5 ± 5.7 0.190 

CpG 5  68.0 ± 9.2 65.0 ± 6.2 0.071 

CpG 6  42.8 ± 6.3 40.6 ± 4.2 0.050 

CpG 7  52.5 ± 5.8 52.0 ± 6.5 0.428 

Overall (all CpG sites) 51.2 ± 5.1 48.9 ± 4.4 0.021 

Males 50.2 ± 4.6 49.3 ± 3.4 0.201 

Females 52.1 ± 5.5 48.5 ± 5.3 0.028 

BDNF  Exon 1/Promoter    

CpG 1  2.1 ± 0.8 1.6 ± 0.6 0.001 

CpG 2  6.1 ± 1.5 5.8 ± 2.1 0.229 

CpG 3  2.1 ± 0.7 1.6 ± 0.7 <0.001 

CpG 4  3.1 ± 1.1 2.9 ± 1.1 0.301 

CpG 5  1.8 ± 0.8 1.4 ± 0.5 0.003 

Overall (all CpG sites) 3.1 ± 0.8 2.7 ± 0.7 0.003 

Males 3.2 ± 0.8 2.7 ± 0.7 0.012 

Females 2.9 ± 0.7 2.6 ± 0.7 0.212 
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Data are expressed as mean ± SD. All genes were investigated; those showing significant difference 

between treatment groups are shown. 
1Differences between groups were analyzed by ANCOVA adjusting for covariates: maternal age, 

smoking, caesarean section, baby’s sex and gestational weight. P<0.05 was considered significant.  
2Highly-repeated DNA retrotransposon, chromosomal location unavailable. Assay designed from Florea 

et al. (2013). 
3Gametic DMR, inherits methylation from gamete; somatic DMR, methylation acquired during somatic 

development. Gametic DMR often occur at imprint control regions that regulate more than one gene, 

while somatic DMR are usually associated with regulation of the cognate gene only. 

Abbreviations: GW, gestational week; RBC, red blood cell; CpG, cytosine-phosphate-guanine; DMR, 

differentially methylated region.  

 

GRB10   DMR (gametic)3    

CpG 1  82.2 ± 3.1 80.6 ± 3.8 0.041 

CpG 2  84.9 ± 6.8 82.8 ± 5.9 0.198 

CpG 3  59.9 ± 4.8 61.7 ± 2.9 0.022 

CpG 4  59.8 ± 3.7 59.8 ± 3.7 0.973 

CpG 5  77.0 ± 3.6 76.9 ± 3.8 0.929 

CpG 6  61.8 ± 3.9 62.2 ± 2.8 0.586 

CpG 7  88.0 ± 9.2 87.3 ± 7.5 0.781 

CpG 8  59.2 ± 3.7 60.0 ± 3.6 0.400 

Overall (all CpG sites) 71.6 ± 3.4 71.5 ± 3.0 0.903 

Males 70.9 ± 3.9   71.4 ± 3.0 0.442 

Females 72.2 ± 2.9 71.5 ± 3.1 0.278 

GRIN3B   DMR (gametic)3    

CpG 1  97.4 ± 1.3 96.7 ± 1.6 0.023 

CpG 2  81.0 ± 5.4 82.5 ± 5.9 0.247 

CpG 3  98.3 ± 2.0 97.4 ± 2.5 0.101 

CpG 4  58.0 ± 13.0 60.7 ± 16.9 0.424 

CpG 5  93.0 ± 8.1 86.2 ± 18.3 0.030 

Overall (all CpG sites) 85.5 ± 3.9 84.7 ± 6.6 0.471 

Males 84.7 ± 3.8  85.3 ± 6.5 0.806 

Females 86.4 ± 3.8 83.9 ± 6.8 0.179 
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TABLE 4 

Maternal and newborn determinants of DNA methylation in cord blood (n 86)1 

  
Cord DNA Methylation (%) 

 LINE-12  
IGF2 

 
BDNF 

  β P value  β P value  β P value 

Maternal Characteristics   
 

  
 

  

Folic Acid Treatment -0.247 0.029 
 

-0.226 0.020 
 

-0.301 0.006 

Maternal Age 0.114 0.322 
 

0.170 0.137 
 

0.111 0.317 

Smoking in pregnancy 0.141 0.213 
 

-0.080 0.472 
 

-0.136 0.219 

C-section birth 0.230 0.045 
 

-0.006 0.955 
 

0.296 0.008 

Vitamin B12 (36 GW)3 -0.099 0.492 
 

-0.151 0.185 
 

-0.002 0.990 

Neonatal Characteristics   
 

  
 

  

Sex (M) 0.067 0.572 
 

-0.034 0.764 
 

0.111 0.329 

Birth weight -0.197 0.104 
 

-0.095 0.399 
 

-0.094 0.419 

Cord Vitamin B12 0.038 0.790  -0.236 0.030  0.012 0.932 
1Multiple linear regression analysis performed with gene DNA methylation as dependent variable. P<0.05 was considered significant. 
2Regression for cord DNA methylation was performed for each gene with adjustment for significant covariates, as appropriate. All 

genes were investigated; those showing significant relationships (for maternal or neonatal characteristic) are shown. 
336th GW refers to post-intervention. 

Abbreviations: GW, gestational week; RBC, red blood cell. 
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FIGURE LEGENDS 

FIGURE 1. Flowchart showing study design of participants in the FASSTT trial and cord 

blood collection.  

1Reasons for exclusion: withdrawal from study, pregnancy complications, prescribed folic 

acid, fetal death or transferred to a different hospital. For full details, see original report by 

McNulty et al. 2013 (9). 

Abbreviations: FASSTT, Folic Acid Supplementation in the Second and Third Trimesters. 

 

FIGURE 2. Overall DNA methylation (%) at candidate loci in cord blood by maternal 

treatment group.  

Data are expressed as median ± IQR. Differences were analyzed by ANCOVA adjusting for 

maternal age, smoking, caesarean section, baby’s sex and gestational weight. DNA 

methylation results for BDNF not shown in the figure (Placebo: 3.1 ± 0.08 %; Folic Acid: 2.7 

± 0.07 %; P = 0.003). P<0.05 considered significant. 

 


