151 research outputs found

    Identifier Services: Tracking Objects and Metadata Across Time and Distributed Storage Systems

    Get PDF
    This paper describes research around Identifier Services (IDS). IDS is designed to bind dispersed data objects and verify aspects of their identity and integrity, independent of where the data are located and whether they are duplicate, partial, private, published, active, or static. IDS will allow individuals and repositories to manage, track, and preserve different types of identifiers and their associated data and metadata. The IDS data model which focuses on research processes and the relationship between their data inputs and outputs will significantly improve provenance metadata of distributed collections at any point of their lifecycle

    A plant disease extension of the Infectious Disease Ontology

    Get PDF
    Plants from a handful of species provide the primary source of food for all people, yet this source is vulnerable to multiple stressors, such as disease, drought, and nutrient deficiency. With rapid population growth and climate uncertainty, the need to produce crops that can tolerate or resist plant stressors is more crucial than ever. Traditional plant breeding methods may not be sufficient to overcome this challenge, and methods such as highOthroughput sequencing and automated scoring of phenotypes can provide significant new insights. Ontologies are essential tools for accessing and analysing the large quantities of data that come with these newer methods. As part of a larger project to develop ontologies that describe plant phenotypes and stresses, we are developing a plant disease extension of the Infectious Disease Ontology (IDOPlant). The IDOPlant is envisioned as a reference ontology designed to cover any plant infectious disease. In addition to novel terms for infectious diseases, IDOPlant includes terms imported from other ontologies that describe plants, pathogens, and vectors, the geographic location and ecology of diseases and hosts, and molecular functions and interactions of hosts and pathogens. To encompass this range of data, we are suggesting inOhouse ontology development complemented with reuse of terms from orthogonal ontologies developed as part of the Open Biomedical Ontologies (OBO) Foundry. The study of plant diseases provides an example of how an ontological framework can be used to model complex biological phenomena such as plant disease, and how plant infectious diseases differ from, and are similar to, infectious diseases in other organism

    MicrO: an ontology of phenotypic and metabolic characters, assays, and culture media found in prokaryotic taxonomic descriptions

    Get PDF
    Background: MicrO is an ontology of microbiological terms, including prokaryotic qualities and processes, material entities (such as cell components), chemical entities (such as microbiological culture media and medium ingredients), and assays. The ontology was built to support the ongoing development of a natural language processing algorithm, MicroPIE (or, Microbial Phenomics Information Extractor). During the MicroPIE design process, we realized there was a need for a prokaryotic ontology which would capture the evolutionary diversity of phenotypes and metabolic processes across the tree of life, capture the diversity of synonyms and information contained in the taxonomic literature, and relate microbiological entities and processes to terms in a large number of other ontologies, most particularly the Gene Ontology (GO), the Phenotypic Quality Ontology (PATO), and the Chemical Entities of Biological Interest (ChEBI). We thus constructed MicrO to be rich in logical axioms and synonyms gathered from the taxonomic literature. Results: MicrO currently has similar to 14550 classes (similar to 2550 of which are new, the remainder being microbiologically-relevant classes imported from other ontologies), connected by similar to 24,130 logical axioms (5,446 of which are new), and is available at (http://purl.obolibrary.org/obo/MicrO.owl) and on the project website at https://github.com/carrineblank/MicrO. MicrO has been integrated into the OBO Foundry Library (http://www.obofoundry.org/ontology/micro.html), so that other ontologies can borrow and re-use classes. Term requests and user feedback can be made using MicrO's Issue Tracker in GitHub. We designed MicrO such that it can support the ongoing and future development of algorithms that can leverage the controlled vocabulary and logical inference power provided by the ontology. Conclusions: By connecting microbial classes with large numbers of chemical entities, material entities, biological processes, molecular functions, and qualities using a dense array of logical axioms, we intend MicrO to be a powerful new tool to increase the computing power of bioinformatics tools such as the automated text mining of prokaryotic taxonomic descriptions using natural language processing. We also intend MicrO to support the development of new bioinformatics tools that aim to develop new connections between microbial phenotypes and genotypes (i.e., the gene content in genomes). Future ontology development will include incorporation of pathogenic phenotypes and prokaryotic habitats.This work was funded by grants from the National Science Foundation (award DEB-1208534 to CEB, DEB-1208567 to HC, and DEB-1208685 to LRM) and by a travel grant (to CEB) to attend the 2013 NESCent Ontologies for Evolutionary Biology workshop. RW was supported by CyVerse and the National Science Foundation under award numbers DBI-0735191 and DBI-1265383. Many thanks to Elvis Hsin-Hui Wu (University of Arizona), Gail Gasparich (Towson University), and Gordon Burleigh (University of Florida) for comments and/or assistance with ontology construction and compilation of taxonomic descriptions. We would also like to thank Chris Mungall (LBNL), Oliver He (University of Michigan) for technical assistance with OntoBee and OntoFox, and Gareth Owen (ChEBI project leader, head curator) and other curators at ChEBI for assistance in the incorporation of microbial-specific chemical terms and synonyms into ChEBI. Thanks also to the instructors (Melissa Haendel, Matt Yoder, Jim Balhoff) and students of the 2013 NESCent Ontologies for Evolutionary Biology workshop, and to Karen Cranston (NESCent) and the support staff at NESCent. Thanks also to the OBI-devel team for comments regarding the overall structure of assay terms, and associated object properties, in MicrO.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The Plant Ontology: A common reference ontology for plants

    Get PDF
    The Plant Ontology (PO) (http://www.plantontology.org) (Jaiswal et al., 2005; Avraham et al., 2008) was designed to facilitate cross-database querying and to foster consistent use of plant-specific terminology in annotation. As new data are generated from the ever-expanding list of plant genome projects, the need for a consistent, cross-taxon vocabulary has grown. To meet this need, the PO is being expanded to represent all plants. This is the first ontology designed to encompass anatomical structures as well as growth and developmental stages across such a broad taxonomic range. While other ontologies such as the Gene Ontology (GO) (The Gene Ontology Consortium, 2010) or Cell Type Ontology (CL) (Bard et al., 2005) cover all living organisms, they are confined to structures at the cellular level and below. The diversity of growth forms and life histories within plants presents a challenge, but also provides unique opportunities to study developmental and evolutionary homology across organisms

    The Plant Ontology facilitates comparisons of plant development stages across species

    Get PDF
    The Plant Ontology (PO) is a community resource consisting of standardized terms, definitions, and logical relations describing plant structures and development stages, augmented by a large database of annotations from genomic and phenomic studies. This paper describes the structure of the ontology and the design principles we used in constructing PO terms for plant development stages. It also provides details of the methodology and rationale behind our revision and expansion of the PO to cover development stages for all plants, particularly the land plants (bryophytes through angiosperms). As a case study to illustrate the general approach, we examine variation in gene expression across embryo development stages in Arabidopsis and maize, demonstrating how the PO can be used to compare patterns of expression across stages and in developmentally different species. Although many genes appear to be active throughout embryo development, we identified a small set of uniquely expressed genes for each stage of embryo development and also between the two species. Evaluating the different sets of genes expressed during embryo development in Arabidopsis or maize may inform future studies of the divergent developmental pathways observed in monocotyledonous versus dicotyledonous species. The PO and its annotation databasemake plant data for any species more discoverable and accessible through common formats, thus providing support for applications in plant pathology, image analysis, and comparative development and evolution

    Towards global data products of Essential Biodiversity Variables on species traits

    Get PDF
    Essential Biodiversity Variables (EBVs) allow observation and reporting of global biodiversity change, but a detailed framework for the empirical derivation of specific EBVs has yet to be developed. Here, we re-examine and refine the previous candidate set of species traits EBVs and show how traits related to phenology, morphology, reproduction, physiology and movement can contribute to EBV operationalization. The selected EBVs express intra-specific trait variation and allow monitoring of how organisms respond to global change. We evaluate the societal relevance of species traits EBVs for policy targets and demonstrate how open, interoperable and machine-readable trait data enable the building of EBV data products. We outline collection methods, meta(data) standardization, reproducible workflows, semantic tools and licence requirements for producing species traits EBVs. An operationalization is critical for assessing progress towards biodiversity conservation and sustainable development goals and has wide implications for data-intensive science in ecology, biogeography, conservation and Earth observation

    Community next steps for making globally unique identifiers work for biocollections data

    Get PDF
    Biodiversity data is being digitized and made available online at a rapidly increasing rate but current practices typically do not preserve linkages between these data, which impedes interoperation, provenance tracking, and assembly of larger datasets. For data associated with biocollections, the biodiversity community has long recognized that an essential part of establishing and preserving linkages is to apply globally unique identifiers at the point when data are generated in the field and to persist these identifiers downstream, but this is seldom implemented in practice. There has neither been coalescence towards one single identifier solution (as in some other domains), nor even a set of recommended best practices and standards to support multiple identifier schemes sharing consistent responses. In order to further progress towards a broader community consensus, a group of biocollections and informatics experts assembled in Stockholm in October 2014 to discuss community next steps to overcome current roadblocks. The workshop participants divided into four groups focusing on: identifier practice in current field biocollections; identifier application for legacy biocollections; identifiers as applied to biodiversity data records as they are published and made available in semantically marked-up publications; and cross-cutting identifier solutions that bridge across these domains. The main outcome was consensus on key issues, including recognition of differences between legacy and new biocollections processes, the need for identifier metadata profiles that can report information on identifier persistence missions, and the unambiguous indication of the type of object associated with the identifier. Current identifier characteristics are also summarized, and an overview of available schemes and practices is provided

    The environment ontology in 2016: bridging domains with increased scope, semantic density, and interoperation

    Get PDF
    Background The Environment Ontology (ENVO; http://www.environmentontology.org/), first described in 2013, is a resource and research target for the semantically controlled description of environmental entities. The ontology's initial aim was the representation of the biomes, environmental features, and environmental materials pertinent to genomic and microbiome-related investigations. However, the need for environmental semantics is common to a multitude of fields, and ENVO's use has steadily grown since its initial description. We have thus expanded, enhanced, and generalised the ontology to support its increasingly diverse applications. Methods We have updated our development suite to promote expressivity, consistency, and speed: we now develop ENVO in the Web Ontology Language (OWL) and employ templating methods to accelerate class creation. We have also taken steps to better align ENVO with the Open Biological and Biomedical Ontologies (OBO) Foundry principles and interoperate with existing OBO ontologies. Further, we applied text-mining approaches to extract habitat information from the Encyclopedia of Life and automatically create experimental habitat classes within ENVO. Results Relative to its state in 2013, ENVO's content, scope, and implementation have been enhanced and much of its existing content revised for improved semantic representation. ENVO now offers representations of habitats, environmental processes, anthropogenic environments, and entities relevant to environmental health initiatives and the global Sustainable Development Agenda for 2030. Several branches of ENVO have been used to incubate and seed new ontologies in previously unrepresented domains such as food and agronomy. The current release version of the ontology, in OWL format, is available at http://purl.obolibrary.org/obo/envo.owl. Conclusions ENVO has been shaped into an ontology which bridges multiple domains including biomedicine, natural and anthropogenic ecology, ‘omics, and socioeconomic development. Through continued interactions with our users and partners, particularly those performing data archiving and sythesis, we anticipate that ENVO’s growth will accelerate in 2017. As always, we invite further contributions and collaboration to advance the semantic representation of the environment, ranging from geographic features and environmental materials, across habitats and ecosystems, to everyday objects in household settings

    Alleviating Environmental Health Disparities Through Community Science and Data Integration

    Get PDF
    Environmental contamination is a fundamental determinant of health and well-being, and when the environment is compromised, vulnerabilities are generated. The complex challenges associated with environmental health and food security are influenced by current and emerging political, social, economic, and environmental contexts. To solve these “wicked” dilemmas, disparate public health surveillance efforts are conducted by local, state, and federal agencies. More recently, citizen/community science (CS) monitoring efforts are providing site-specific data. One of the biggest challenges in using these government datasets, let alone incorporating CS data, for a holistic assessment of environmental exposure is data management and interoperability. To facilitate a more holistic perspective and approach to solution generation, we have developed a method to provide a common data model that will allow environmental health researchers working at different scales and research domains to exchange data and ask new questions. We anticipate that this method will help to address environmental health disparities, which are unjust and avoidable, while ensuring CS datasets are ethically integrated to achieve environmental justice. Specifically, we used a transdisciplinary research framework to develop a methodology to integrate CS data with existing governmental environmental monitoring and social attribute data (vulnerability and resilience variables) that span across 10 different federal and state agencies. A key challenge in integrating such different datasets is the lack of widely adopted ontologies for vulnerability and resiliency factors. In addition to following the best practice of submitting new term requests to existing ontologies to fill gaps, we have also created an application ontology, the Superfund Research Project Data Interface Ontology (SRPDIO)
    • 

    corecore