2,716 research outputs found

    Returning findings within longitudinal cohort studies: the 1958 birth cohort as an exemplar

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.Population-based, prospective longitudinal cohort studies are considering the issues surrounding returning findings to individuals as a result of genomic and other medical research studies. While guidance is being developed for clinical settings, the process is less clear for those conducting longitudinal research. This paper discusses work conducted on behalf of The UK Cohort and Longitudinal Study Enhancement Resource programme (CLOSER) to examine consent requirements, process considerations and specific examples of potential findings in the context of the 1958 British Birth cohort. Beyond deciding which findings to return, there are questions of whether re-consent is needed and the possible impact on the study, how the feedback process will be managed, and what resources are needed to support that process. Recommendations are made for actions a cohort study should consider taking when making vital decisions regarding returning findings. Any decisions need to be context-specific, arrived at transparently, communicated clearly, and in the best interests of both the participants and the study.JE acknowledges the Economic and Social Research Council for their support for CLOSER [ES/K000357/1]. NW acknowledges the support of the JDRF, the Wellcome Trust and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award [100140]. 58READIE is supported by the Wellcome Trust [WT095219MA] and the Medical Research Council [G1001799]

    Targeting co-stimulatory molecules in autoimmune disease

    Get PDF
    Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, in which efforts have focused in particular on cytotoxic T lymphocyte antigen 4 (CTLA4) and PD1, both of which are members of the CD28 family. In autoimmunity, these same pathways can be targeted to opposite effect: to curb the over-exuberant immune response. The CTLA4 checkpoint serves as an exemplar, whereby CTLA4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA4 in autoimmunity. Here, we review the targeting of co-stimulatory molecules in autoimmune diseases, focusing in particular on agents directed at members of the CD28 or tumour necrosis factor receptor families. We present the state of the art in co-stimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field

    The chromosome 6q22.33 region is associated with age at diagnosis of type 1 diabetes and disease risk in those diagnosed under 5 years of age

    Get PDF
    AIMS/HYPOTHESIS: The genetic risk of type 1 diabetes has been extensively studied. However, the genetic determinants of age at diagnosis (AAD) of type 1 diabetes remain relatively unexplained. Identification of AAD genes and pathways could provide insight into the earliest events in the disease process. METHODS: Using ImmunoChip data from 15,696 cases, we aimed to identify regions in the genome associated with AAD. RESULTS: Two regions were convincingly associated with AAD (p  0.001), the SNP most associated with AAD, rs72975913, was associated with susceptibility to type 1 diabetes in those individuals diagnosed at less than 5 years old (p = 2.3 × 10(-9)). CONCLUSION/INTERPRETATION: PTPRK and its neighbour THEMIS are required for early development of the thymus, which we can assume influences the initiation of autoimmunity. Non-HLA genes may only be detectable as risk factors for the disease in individuals diagnosed under the age 5 years because, after that period of immune development, their role in disease susceptibility has become redundant.CW is funded by the Wellcome Trust (WT107881) and the Medical Research Council (MC_UP_1302/5). LB was supported by the Alan Turing Institute under the EPSRC grant EP/N510129/1

    Power calculator for instrumental variable analysis in pharmacoepidemiology

    Get PDF
    Background: Instrumental variable analysis, for example with physicians' prescribing preferences as an instrument for medications issued in primary care, is an increasingly popular method in the field of pharmacoepidemiology. Existing power calculators for studies using instrumental variable analysis, such as Mendelian randomization power calculators, do not allow for the structure of research questions in this field. This is because the analysis in pharmacoepidemiology will typically have stronger instruments and detect larger causal effects than in other fields. Consequently, there is a need for dedicated power calculators for pharmacoepidemiological research. Methods and Results: The formula for calculating the power of a study using instrumental variable analysis in the context of pharmacoepidemiology is derived before being validated by a simulation study. The formula is applicable for studies using a single binary instrument to analyse the causal effect of a binary exposure on a continuous outcome. An online calculator, as well as packages in both R and Stata, are provided for the implementation of the formula by others. Conclusions: The statistical power of instrumental variable analysis in pharmacoepidemiological studies to detect a clinically meaningful treatment effect is an important consideration. Research questions in this field have distinct structures that must be accounted for when calculating power. The formula presented differs from existing instrumental variable power formulae due to its parametrization, which is designed specifically for ease of use by pharmacoepidemiologists.This work was supported by the Perros Trust and the Integrative Epidemiology Unit. The Integrative Epidemiology Unit is supported by the Medical Research Council and the University of Bristol [grant number MC_UU_12013/9]. S.B. is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number 204623/Z/16/Z)

    Late night salivary cortisol and cortisone should be the initial screening test for Cushing’s syndrome

    Get PDF
    Endogenous Cushing’s syndrome (CS) poses considerable diagnostic challenges. Although late night salivary cortisol (LNSC) is recommended as a first line screening investigation, it remains the least widely used test in many countries. The combined measurement of LNSC and late-night salivary cortisone (LNS cortisone) has shown to further improve diagnostic accuracy1. We present a retrospective study in a tertiary referral centre comparing LNSC, LNS cortisone, overnight dexamethasone suppression test, low dose dexamethasone suppression test and 24-hour urinary free cortisol results of patients investigated for CS. Patients were categorised into those who had CS (21 patients) and those who did not (33 patients).LNSC had a sensitivity of 95% and a specificity of 91%. LNS cortisone had a specificity of 100% and a sensitivity of 86%. With an optimal cut-off for LNS cortisone of >14.5 nmol/l the sensitivity was 95.2%, and the specificity was 100% with an area under the curve of 0.997, for diagnosing CS. Saliva collection is non-invasive and can be carried out at home.We therefore advocate simultaneous measurement of LNSC and LNS cortisone as the first-line screening test to evaluate patients with suspected CS
    • …
    corecore