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Abstract

Background: Instrumental variable analysis, for example with physicians’ prescribing

preferences as an instrument for medications issued in primary care, is an increasingly

popular method in the field of pharmacoepidemiology. Existing power calculators for

studies using instrumental variable analysis, such as Mendelian randomization power

calculators, do not allow for the structure of research questions in this field. This is be-

cause the analysis in pharmacoepidemiology will typically have stronger instruments

and detect larger causal effects than in other fields. Consequently, there is a need for

dedicated power calculators for pharmacoepidemiological research.

Methods and Results: The formula for calculating the power of a study using instrumen-

tal variable analysis in the context of pharmacoepidemiology is derived before being

validated by a simulation study. The formula is applicable for studies using a single bin-

ary instrument to analyse the causal effect of a binary exposure on a continuous out-

come. An online calculator, as well as packages in both R and Stata, are provided for the

implementation of the formula by others.

Conclusions: The statistical power of instrumental variable analysis in pharmacoepide-

miological studies to detect a clinically meaningful treatment effect is an important

consideration. Research questions in this field have distinct structures that must be

accounted for when calculating power. The formula presented differs from existing in-

strumental variable power formulae due to its parametrization, which is designed specif-

ically for ease of use by pharmacoepidemiologists.
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Introduction

Pharmacoepidemiological studies risk irrelevance if they

are insufficiently powered to detect clinically meaningful

treatment effects. Before starting a study, the statistical

power to calculate a given treatment effect can be calcu-

lated. This type of calculation is becoming increasingly im-

portant for grant and data request applications, which

look to value the contribution of such studies.

The number of pharmacoepidemiology studies using in-

strumental variable analysis, for example with physicians’

prescribing preferences as an instrument for exposure, con-

tinues to grow.1–6 This is partly because instrumental vari-

able analyses have the potential to overcome some of the

issues associated with conventional statistical approaches,

such as residual confounding and reverse causation. As the

demand to provide power calculations to support applica-

tions increases, there is a more pressing need to be able to

provide power calculations for this method.

There are power calculators for instrumental variable

analysis in other settings, such as Mendelian randomiza-

tion, which uses germline genetic variants as proxies for

exposures in disease-related research.7,8 However, phar-

macoepidemiological research questions have distinct

structures that are not sufficiently catered for by these

existing calculators. Unlike Mendelian randomization

studies, which often use a case-control study design, phar-

macoepidemiology studies typically use a cohort study de-

sign. Further to this, pharmacoepidemiology studies

usually report a risk difference for a binary exposure using

a binary instrument, whereas Mendelian randomization

studies report on a continuous exposure using a discrete or

continuous genetic instrument (count of alleles or allele

score respectively). As a result of these differences, as well

as the stronger instruments and larger causal effects seen in

pharmacoepidemiology, there is a need for a dedicated

power calculator for instrumental variable analysis in the

context of this field.

This paper will address how to conduct power calcula-

tions for pharmacoepidemiological studies using a single

binary instrument to analyse the causal effect of a binary

exposure on a continuous outcome. The formula to calcu-

late power will be derived and then validated by a simula-

tion study. The formula is distinct from existing

instrumental variable power formulae due to its paramet-

rization, which is designed specifically for ease of use by

pharmacoepidemiologists. An online calculator, as well as

packages in both R and Stata, are provided for the imple-

mentation of the formula by others.

Methods and Results

Let us consider physicians’ prescribing preferences for two

different treatments–for example a treatment of interest

and a control treatment–as an instrument for exposure to

these treatments. Physicians’ preferences are generally not

directly observable, so each physician’s prescriptions to

previous patients are used as a proxy for their preferences.

This results in a binary instrument that takes a value of

one if the physician issued a prescription for the treatment

of interest to their previous patient and a value of zero if

they prescribed the control treatment. We will derive the

formula for the power of studies that use this instrument to

measure the causal effect of a drug exposure on a continu-

ous outcome, for example systolic blood pressure or low-

density lipoprotein cholesterol.

Formula derivation

The instrumental variable analysis we consider requires the

following three variables; namely a binary instrument Z, a

binary exposure X and a continuous outcome Y. The out-

come for patient i, for i ¼ 1; . . . ;n, is modelled as follows:

Yi ¼ aþ bXi þUi

where Ui is a zero-mean error term containing unobserved

confounders, determining both the outcome Yi and the

treatment Xi. The instrument Zi affects treatment Xi, but

is not associated with the unobserved confounders and has

no direct effect on the outcome.

Key Messages

• Research questions using instrumental variable analysis in pharmacoepidemiology have distinct structures that have

previously not been catered for by instrumental variable analysis power calculators.

• Power can be calculated for studies using a single binary instrument to analyse the causal effect of a binary exposure

on a continuous outcome in the context of pharmacoepidemiology using the presented formula, an online power cal-

culator or packages available for use in both R and Stata.

• The use of this power calculator will allow investigators to determine whether a pharmacoepidemiology study is

likely to detect clinically meaningful treatment effects before the study’s commencement.
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Let ~Yi ¼ Yi � Y , ~Xi ¼ Xi �X and ~Zi ¼ Zi � Z, where

Y , X and Z are sample averages. Denote by ~y, ~x and ~z

the n-vectors of observations on ~Yi, ~Xi and ~Zi, respectively.

The two-stage least squares (2SLS) estimator of b is then

given by:

b̂ ¼ ð~z0~xÞ�1~z0~y:

The variance of the 2SLS estimator is:

Varðb̂Þ ¼ r2ð~x0P~z ~xÞ�1

where P~z ¼ ~zð~z0~zÞ�1~z0 and r2 ¼ EðU2
i Þ is the residual vari-

ance. Note that conditional homoscedasticity holds, so the

variance is constant for all values of the instrument i.e.

EðU2
i Þ ¼ EðU2

i jZiÞ ¼ r2 for i ¼ 1; . . . ; n.

Consider the term ~x0P~z ~x:

~x0P~z ~x ¼ ~x0~zð~z0~zÞ�1~z0~x ¼ n
~x0~z

n

� �
~z0~z

n

� ��1
~z0~x

n

� �

Let pZ ¼ PðZ ¼ 1Þ, pX ¼ PðX ¼ 1Þ and pXZ ¼ PðX ¼
1jZ ¼ 1Þ. In large samples:

~z0~z

n

� �
� Varð~zÞ ¼ pZð1� pZÞ

~x0~z

n

� �
¼ x0z

n
�XZ

� �
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Hence ~x0P~z ~x can be presented in the following way:

~x0P~z ~x �
n
�

pZðpXZ � pXÞ
�2

pZð1� pZÞ

Now consider the instrumental variable estimator of b.

Using the asymptotic distribution b̂ � N
�
b;r2ð~x0P~z ~xÞ�1

�
,

the distribution of the t-test statistic under the null hypoth-

esis H0 : b ¼ b0 is:

t ¼ b̂ � b0

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~x0P~z ~xÞ�1

q � Nð0; 1Þ

The distribution of the test statistic under the alternative

hypothesis H1 : b ¼ b0 þ d is:

t ¼ b̂ � b0

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~x0P~z ~xÞ�1

q ¼ b̂ � b0 � d
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The null hypothesis is rejected if jtj > ca where ca is the

critical value at significance level a.

The power is the probability that the test statistic will

exceed the critical value, which is:

Pðt > caÞ þ Pðt < �caÞ ¼ U �ca þ
d

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where UðsÞ is the cumulative standard normal distribution

function evaluated at s. Power therefore increases as the

value of r decreases and/or the value of ~x0P~z ~x increases. By

substituting ~x0P~z ~x and simplifying, we obtain the follow-

ing formula for power:

Power ¼ U �ca þ
d
�

pZðpXZ � pXÞ
� ffiffiffi

n
p

r
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The formula requires a total of seven parameters to be

specified. This includes four parameters that must always

be specified–these are the significance level, a; the size of

the causal effect, d; the residual variance, r2 ¼ EðU2
i Þ; and

the sample size, n. Also three that can be chosen from the

following four parameters–these are the frequency of the

instrument, pZ ¼ PðZ ¼ 1Þ; the frequency of exposure,

pX ¼ PðX ¼ 1Þ; the probability of exposure given the

instrument Z ¼ 1, pXZ ¼ PðX ¼ 1jZ ¼ 1Þ; and the

probability of exposure given the instrument Z ¼ 0,

pXZ ¼ PðX ¼ 1jZ ¼ 0Þ. The chosen parameters must be

specified so that the following holds:

PðX ¼ 1Þ ¼ PðX ¼ 1jZ ¼ 0ÞPðZ ¼ 0Þ þ PðX ¼ 1jZ ¼ 1ÞPðZ ¼ 1Þ

The formula for power is available for use via an online

calculator [https://venexia.shinyapps.io/PharmIV/] and

packages for R and Stata can be downloaded from GitHub

[https://github.com/venexia/PharmIV].

Note that the frequency of exposure in an instrumental

variable analysis of this type is likely to be higher than in a

general population study because a drug is compared

against one or more other drugs in a population of people

with the indication for these treatments. General popula-

tion studies, on the other hand, tend to compare a popula-

tion who received the drug of interest with a population

who did not receive it, and consequently the frequency of
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exposure is generally much lower. The effect of varying the

parameters within the formula on a study’s power is best

presented graphically. Figure 1 illustrates an example of

the effect of the frequency of the exposure pX ¼ PðX ¼ 1Þ
on the power of a study to detect a causal effect of d ¼ �
0:150 using an instrument with a frequency of pZ ¼ 0:200,

a residual variance of r2 ¼ 1 and a sample size of up to

30 000 participants. Both increasing the frequency of ex-

posure up to 50% and increasing the sample size results in

increased power for this study.

Formula validation

To validate the power formula, we conducted a simulation.

We simulated the data by defining the three variables ne-

cessary to conduct instrumental variable analysis with a

single instrumental variable as follows:

Instrument : Zi � Binomialð1;pZÞ

Exposure : Xi �
(

0; if c0 þ Ziðc1 � c0Þ þ Vi� 0

1; if c0 þ Ziðc1 � c0Þ þ Vi > 0

Outcome : Yi � dXi þUi

where pZ ¼ PðZ ¼ 1Þ is the frequency of the instrument,

cj ¼ A�1
�

PðX ¼ 1jZ ¼ jÞ
�

for j ¼ 0; 1 are the inverse

cumulative standard normal distribution, or quantile, func-

tions of the conditional probabilities of exposure given the

instrument, d is the causal effect, and Ui and Vi are stand-

ard normally distributed error terms with covariance q.

The formula uses a binary instrument, binary exposure

and continuous outcome and so the above variables were

simulated to recreate data of this form. The instrument Z

is modelled by a binomial distribution parameterized by its

frequency pZ ¼ PðZ ¼ 1Þ. This ensures a binary variable

with the correct probability of success. The exposure X is

also binary but is modelled using a threshold model. The

variability in the equation for the exposure comes from the

normally distributed error term Vi. The use of the model

equation allows the exposure X to be associated with the

instrument Z. The outcome Y is modelled by its model

equation Yi ¼ dXi þUi. In the model, the instrument is

valid as the outcome Y is only associated with the exposure

X; as dictated by the causal effect d, and is not associated

with the instrument Z other than through the exposure X.

Using the generated data, we performed an instrumental

variable analysis using the command IVREG2 in Stata.9

From this analysis, we recorded the coefficient of the ex-

posure X with the 95% confidence interval. We then

counted the number of simulations for which the confi-

dence interval excluded the null, and divided this by the

total number of simulations to determine the power. By

running the simulation and calculating the formula using

the same parameters, we are able to validate the formula

against the simulation.

We present the power calculated from both the simula-

tion and the formula for several parameter combinations

in Table 1. The table contains 27 different simulations

and each was repeated 10 000 times. The simulations con-

sider each combination of three values of the frequency

of exposure, pX ¼ 0:100;0:250; 0:500; three values of the

probability of exposure given the instrument Z ¼ 1,

pXZ ¼ 0:150;0:300; 0:450; and three values of the sam-

ple size, N ¼ 10000;20000;30000. We set the frequency

of the instrument, pZ ¼ 0:200; the causal effect,

d ¼ �0:150; the residual variance, r2 ¼ 1; and calculated

PðX ¼ 1jZ ¼ 0Þ according to the following equation:

PðX ¼ 1jZ ¼ 0Þ ¼ PðX ¼ 1Þ � PðX ¼ 1jZ ¼ 1ÞPðZ ¼ 1Þ
1� PðZ ¼ 1Þ

¼ pX � pXZpZ

1� pZ

The effect of confounding was removed as a parameter be-

cause the power was insensitive to its value in the simula-

tion setting. Details of the simulations conducted to test

this can be found in Supplementary File 1, available as

Supplementary data at IJE online. The Stata code for this

paper, including that used to create the simulation, is avail-

able from GitHub [https://github.com/venexia/PharmIV].

Simulation results

The formula and the simulation consistently provide simi-

lar results, with an absolute mean difference of 0:4% for

Figure 1. Power curves for several values of the frequency of exposure

pX ¼ P ðX ¼ 1Þ that show the effect on the power of a study to detect a

causal effect of d ¼ �0:150 using an instrument with a frequency of

pZ ¼ 0:200, a residual variance of r2 ¼ 1 and a sample size of up to

30 000 participants.
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the parameter combinations presented in Table 1. There is

also no discernible pattern in the differences, suggesting

systematic bias is not present. Further to this, the power is

consistent with its behaviour in other established power

calculations. For example, increasing sample size univer-

sally improves power for all parameter combinations.

Discussion

In this paper, we have derived the formula necessary to cal-

culate power for instrumental variable analysis with a single

binary instrument, binary exposure and continuous out-

come in the context of pharmacoepidemiology. The formula

has been shown to be valid by comparison against a simula-

tion study, which concluded that the formula provided near

true values across a range of realistic parameters.

We acknowledge that there is some overlap of this cal-

culator with existing calculators such as that proposed by

Burgess for Mendelian randomization.7 Although both cal-

culators ultimately have a shared aim, namely to calculate

the power of a study using an instrumental variable ana-

lysis, their application makes the calculators distinct. This

is evident from the choice of parameterization of the power

formula. The Mendelian randomization calculator opts for

the coefficient of determination, R2. This is a natural

choice for the application, as it summarizes the proportion

of the variance expected to be explained by genetic factors.

In contrast, we have opted to parameterize our calculator

for use in pharmacoepidemiological studies in terms of the

frequency of the instrument, the frequency of the exposure

and the conditional probabilities that relate them. This is

more intuitive to a pharmacoepidemiological audience

who will typically use the proportion of patients exposed,

i.e. the frequency of exposure. In addition to this, the in-

struments typically used in this framework–for example,

physicians’ prescribing preference–do not necessarily fit as

naturally to the notion of variance explained and are

summarized much more easily by their frequency and their

relationship with exposure.

A concern for any instrumental variable analysis,

whether in the context of pharmacoepidemiology or not, is

the strength of the instrument. Instruments are termed weak

when the correlation between the instruments and the

exposure is low.10 A commonly cited threshold is a partial F

statistic of the association between the instrument and the

exposure of less than 10.8,11 Weak instruments will result in

low power to detect a causal effect.12–14 They are also

known to induce bias, as such instruments may explain only

a small proportion of the association between the exposure

and outcome. Therefore, although pharmacoepidemiologi-

cal studies are likely to have stronger instruments than other

forms of instrumental variable analysis such as Mendelian

randomization, researchers should remain mindful of their

choice of instrument and whether it is appropriate for the

research question they wish to study.

As for any power formula, the formula presented here is

limited by its parameters, which simplify the dataset being

considered. Power calculated from such formulae cannot

account for dataset characteristics outside these param-

eters. For example, the formula makes no allowance for

the presence of missing data–a known limiting factor in the

power of a study. By allowing for missing data in the

anticipated sample size, conservative estimates for the

power of a study can be obtained using the formula pre-

sented. Further work is needed in order to establish the for-

mula for power in other scenarios that use instrumental

variable analysis within a pharmacoepidemiology context.

This includes analyses with binary outcomes and analyses

that involve multiple instrumental variables.

As the use of instrumental variable analysis in pharma-

coepidemiology becomes more commonplace, there is an

increasing need to provide power calculations for studies

using this type of analysis. To provide such information,

accessible and accurate power formulae need to be made

Table 1. A comparison of the power calculated from the formula and a validation simulation for an instrumental variable ana-

lysis where the causal effect d ¼ �0:150, the frequency of the instrument pZ ¼ 0:200 and the residual variance r2 ¼ 1

pX pXZ 10 000 patients 20 000 patients 30 000 patients

Formula Simulation Formula Simulation Formula Simulation

0.100 0.150 6.6% 6.1% 8.3% 7.9% 10.0% 9.8%

0.300 32.3% 33.3% 56.4% 55.5% 73.8% 73.9%

0.450 74.7% 75.6% 96.0% 95.9% 99.5% 99.5%

0.250 0.150 11.7% 11.4% 18.6% 18.3% 25.5% 25.5%

0.300 6.6% 5.4% 8.3% 7.9% 10.0% 9.8%

0.450 32.3% 32.8% 56.4% 56.1% 73.8% 73.7%

0.500 0.150 74.7% 74.2% 96.0% 95.9% 99.5% 99.6%

0.300 32.3% 32.5% 56.4% 57.1% 73.8% 73.7%

0.450 6.6% 5.0% 8.3% 7.2% 10.0% 10.1%
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available. By using the formula presented here, either dir-

ectly or via the online tool and packages in R and Stata, it

is hoped that pharmacoepidemiologists can calculate the

power of instrumental variable analysis studies with a sin-

gle binary instrument, binary exposure and continuous

outcome with ease.

Supplementary Data

Supplementary data area available at IJE online.

Funding

This work was supported by the Perros Trust and the Integrative

Epidemiology Unit. The Integrative Epidemiology Unit is supported

by the Medical Research Council and the University of Bristol [grant

number MC_UU_12013/9]. S.B. is supported by a Sir Henry Dale

Fellowship jointly funded by the Wellcome Trust and the Royal

Society (Grant Number 204623/Z/16/Z).

Conflict of interest: None to declare.

References

1. Hern�an MA, Robins JM. Instruments for causal inference: an

epidemiologist’s dream? Epidemiology 2006;17:360–72.

2. Greenland S. An introduction to instrumental variables for epi-

demiologists. Int J Epidemiol 2000;29:722–29.

3. Davies NM, Gunnell D, Thomas KH, Metcalfe C, Windmeijer F,

Martin RM. Physicians’ prescribing preferences were a potential

instrument for patients’ actual prescriptions of antidepressants.

J Clin Epidemiol 2013;66:1386–96.

4. Brookhart MA, Rassen JA, Schneeweiss S. Instrumental variable

methods in comparative safety and effectiveness research.

Pharmacoepidemiol Drug Saf 2010;19:537–54.

5. Brookhart MA, Wang P, Solomon DH, Schneeweiss S.

Evaluating short-term drug effects using a physician-specific pre-

scribing preference as an instrumental variable. Epidemiology

2006;17:268–75.

6. Davies NM, Davey Smith G, Windmeijer F, Martin RM. COX-2

selective nonsteroidal anti-inflammatory drugs and risk of

gastrointestinal tract complications and myocardial infarction:

an instrumental variable analysis. Epidemiology 2013;

24:352–62.

7. Burgess S. Sample size and power calculations in Mendelian

randomization with a single instrumental variable and a binary

outcome. Int J Epidemiol 2014;43:922–29.

8. Freeman G, Cowling BJ, Schooling CM. Power and sample size

calculations for Mendelian randomization studies using one gen-

etic instrument. Int J Epidemiol 2013;42:1157–63.

9. StataCorp. Stata Statistical Software. College Station, TX:

StataCorp LP, 2015.

10. Bound J, Jaeger DA, Baker RM. Problems with instrumental

variables estimation when the correlation between the instru-

ments and the endogeneous explanatory variable is weak. J Am

Stat Assoc 1995;90:443–50.

11. Hern�an M, Robins J. Causal Inference. Boca Raton, FL:

Chapman & Hall/CRC, forthcoming.

12. Rassen JA, Brookhart MA, Glynn RJ, Mittleman MA,

Schneeweiss S. Instrumental variables I: instrumental variables

exploit natural variation in nonexperimental data to estimate

causal relationships. J Clin Epidemiol 2009;62:1226–32.

13. Rassen JA, Brookhart MA, Glynn RJ, Mittleman MA,

Schneeweiss S. Instrumental variables II: instrumental variable

application—in 25 variations, the physician prescribing prefer-

ence generally was strong and reduced covariate imbalance.

J Clin Epidemiol 2009;62:1233–41.

14. Davies NM, von Hinke Kessler Scholder S, Farbmacher H,

Burgess S, Windmeijer F, Davey Smith G. The many weak instru-

ments problem and Mendelian randomization. Stat Med 2015;

34:454–68.

6 International Journal of Epidemiology, 2017, Vol. 0, No. 0

Downloaded from https://academic.oup.com/ije/article-abstract/doi/10.1093/ije/dyx090/3858437/Power-calculator-for-instrumental-variable
by University of Cambridge user
on 04 October 2017


