4,441 research outputs found

    Eddy Influences on Hadley Circulations: Simulations with an Idealized GCM

    Get PDF
    An idealized GCM is used to investigate how the strength and meridional extent of the Hadley circulation depend on the planet radius, rotation rate, and thermal driving. Over wide parameter ranges, the strength and meridional extent of the Hadley circulation display clear scaling relations with regime transitions, which are not predicted by existing theories of axisymmetric Hadley circulations. For example, the scaling of the strength as a function of the radiative-equilibrium equator-to-pole temperature contrast exhibits a regime transition corresponding to a regime transition in scaling laws of baroclinic eddy fluxes. The scaling of the strength of the cross-equatorial Hadley cell as a function of the latitude of maximum radiative-equilibrium temperature exhibits a regime transition from a regime in which eddy momentum fluxes strongly influence the strength to a regime in which the influence of eddy momentum fluxes is weak. Over a wide range of flow parameters, albeit not always, the Hadley circulation strength is directly related to the eddy momentum flux divergence at the latitude of the streamfunction extremum. Simulations with hemispherically symmetric thermal driving span circulations with local Rossby numbers in the horizontal upper branch of the Hadley circulation between 0.1 and 0.8, indicating that neither nonlinear nearly inviscid theories, valid for Ro → 1, nor linear theories, valid for Ro → 0, of axisymmetric Hadley circulations can be expected to be generally adequate. Nonlinear theories of axisymmetric Hadley circulations may account for aspects of the circulation when the maximum radiative-equilibrium temperature is displaced sufficiently far away from the equator, which results in cross-equatorial Hadley cells with nearly angular momentum-conserving upper branches. The dependence of the Hadley circulation on eddy fluxes, which are themselves dependent on extratropical circulation characteristics such as meridional temperature gradients, suggests that tropical circulations depend on the extratropical climate

    Scaling Laws and Regime Transitions of Macroturbulence in Dry Atmospheres

    Get PDF
    In simulations of a wide range of circulations with an idealized general circulation model, clear scaling laws of dry atmospheric macroturbulence emerge that are consistent with nonlinear eddy–eddy interactions being weak. The simulations span several decades of eddy energies and include Earth-like circulations and circulations with multiple jets and belts of surface westerlies in each hemisphere. In the simulations, the eddy available potential energy and the barotropic and baroclinic eddy kinetic energy scale linearly with each other, with the ratio of the baroclinic eddy kinetic energy to the barotropic eddy kinetic energy and eddy available potential energy decreasing with increasing planetary radius and rotation rate. Mean values of the meridional eddy flux of surface potential temperature and of the vertically integrated convergence of the meridional eddy flux of zonal momentum generally scale with functions of the eddy energies and the energy-containing eddy length scale, with a few exceptions in simulations with statically near-neutral or neutral extratropical thermal stratifications. Eddy energies scale with the mean available potential energy and with a function of the supercriticality, a measure of the near-surface slope of isentropes. Strongly baroclinic circulations form an extended regime in which eddy energies scale linearly with the mean available potential energy. Mean values of the eddy flux of surface potential temperature and of the vertically integrated eddy momentum flux convergence scale similarly with the mean available potential energy and other mean fields. The scaling laws for the dependence of eddy fields on mean fields exhibit a regime transition between a regime in which the extratropical thermal stratification and tropopause height are controlled by radiation and convection and a regime in which baroclinic entropy fluxes modify the extratropical thermal stratification and tropopause height. At the regime transition, for example, the dependence of the eddy flux of surface potential temperature and the dependence of the vertically integrated eddy momentum flux convergence on mean fields changes -— a result with implications for climate stability and for the general circulation of an atmosphere, including its tropical Hadley circulation

    Self-Organization of Atmospheric Macroturbulence into Critical States of Weak Nonlinear Eddy–Eddy Interactions

    Get PDF
    It is generally held that atmospheric macroturbulence can be strongly nonlinear. Yet weakly nonlinear models successfully account for scales and structures of baroclinic eddies in Earth's atmosphere. Here a theory and simulations with an idealized GCM are presented that suggest weakly nonlinear models are so successful because atmospheric macroturbulence organizes itself into critical states of weak nonlinear eddy–eddy interactions. By modifying the thermal structure of the extratropical atmosphere such that its supercriticality remains limited, macroturbulence inhibits nonlinear eddy–eddy interactions and the concomitant inverse energy cascade from the length scales of baroclinic instability to larger scales. For small meridional surface temperature gradients, the extratropical thermal stratification and tropopause height are set by radiation and convection, and the supercriticality is less than one; for sufficiently large meridional surface temperature gradients, the extratropical thermal stratification and tropopause height are modified by baroclinic eddies such that the supercriticality does not significantly exceed one. In either case, the scale of the energy-containing eddies is similar to the scale of the linearly most unstable baroclinic waves, and eddy kinetic and available potential energies are equipartitioned. The theory and simulations point to fundamental constraints on the thermal structures and global circulations of the atmospheres of Earth and other planets, for example, by providing limits on the tropopause height and estimates for eddy scales, eddy energies, and jet separation scales

    Higher-Dimensional Algebra VII: Groupoidification

    Full text link
    Groupoidification is a form of categorification in which vector spaces are replaced by groupoids, and linear operators are replaced by spans of groupoids. We introduce this idea with a detailed exposition of "degroupoidification": a systematic process that turns groupoids and spans into vector spaces and linear operators. Then we present three applications of groupoidification. The first is to Feynman diagrams. The Hilbert space for the quantum harmonic oscillator arises naturally from degroupoidifying the groupoid of finite sets and bijections. This allows for a purely combinatorial interpretation of creation and annihilation operators, their commutation relations, field operators, their normal-ordered powers, and finally Feynman diagrams. The second application is to Hecke algebras. We explain how to groupoidify the Hecke algebra associated to a Dynkin diagram whenever the deformation parameter q is a prime power. We illustrate this with the simplest nontrivial example, coming from the A2 Dynkin diagram. In this example we show that the solution of the Yang-Baxter equation built into the A2 Hecke algebra arises naturally from the axioms of projective geometry applied to the projective plane over the finite field with q elements. The third application is to Hall algebras. We explain how the standard construction of the Hall algebra from the category of representations of a simply-laced quiver can be seen as an example of degroupoidification. This in turn provides a new way to categorify - or more precisely, groupoidify - the positive part of the quantum group associated to the quiver.Comment: 67 pages, 14 eps figures; uses undertilde.sty. This is an expanded version of arXiv:0812.486

    A Climatology of Tropospheric Zonal-Mean Water Vapor Fields and Fluxes in Isentropic Coordinates

    Get PDF
    Based on reanalysis data for the years 1980–2001 from the European Centre for Medium-Range Weather Forecasts (ERA-40 data), a climatology of tropospheric zonal-mean water vapor fields and fluxes in isentropic coordinates is presented. In the extratropical free troposphere, eddy fluxes dominate the meridional flux of specific humidity along isentropes. At all levels, isentropic eddy fluxes transport water vapor from the deep Tropics through the subtropics into the extratropics. Isentropic eddy fluxes of specific humidity diverge near the surface and in the tropical and subtropical free troposphere; they converge in the extratropical free troposphere. Isentropic mean advective fluxes of specific humidity play a secondary role in the meridional water vapor transport in the free troposphere; however, they dominate the meridional flux of specific humidity near the surface, where they transport water vapor equatorward and, in the solstice seasons, across the equator. Cross-isentropic mean advective fluxes of specific humidity are especially important in the Hadley circulation, in whose ascending branches they moisten and in whose descending branches they dry the free troposphere. Near the minima of zonal-mean relative humidity in the subtropical free troposphere, the divergence of the cross-isentropic mean advective flux of specific humidity in the descending branches of the Hadley circulation is the dominant divergence in the mean specific humidity balance; it is primarily balanced by convergence of cross-isentropic turbulent fluxes that transport water vapor from the surface upward. Although there are significant isentropic eddy fluxes of specific humidity through the region of the subtropical relative humidity minima, their divergence near the minima is generally small compared with the divergence of cross-isentropic mean advective fluxes, implying that moistening by eddy transport from the Tropics into the region of the minima approximately balances drying by eddy transport into the extratropics. That drying by cross-isentropic mean subsidence near the subtropical relative humidity minima is primarily balanced by moistening by upward turbulent fluxes of specific humidity, likely in convective clouds, suggests cloud dynamics may play a central role in controlling the relative humidity of the subtropical free troposphere

    Smallholder Participation in Agricultural Value Chains: Comparative Evidence from Three Continents

    Get PDF
    Supermarkets, specialized wholesalers, and processors and agro-exporters’ agricultural value chains have begun to transform the marketing channels into which smallholder farmers sell produce in low-income economies. We develop a conceptual framework through which to study contracting between smallholders and a commodity-processing firm. We then conduct an empirical meta-analysis of agricultural value chains in five countries across three continents (Ghana, India, Madagascar, Mozambique, and Nicaragua). We document patterns of participation, the welfare gains associated with participation, reasons for non-participation, the significant extent of contract non-compliance, and the considerable dynamism of these value chains, as farmers and firms enter and exit frequently.

    Molecular Star Formation Rate Indicators in Galaxies

    Full text link
    We derive a physical model for the observed relations between star formation rate (SFR) and molecular line (CO and HCN) emission in galaxies, and show how these observed relations are reflective of the underlying star formation law. We do this by combining 3D non-LTE radiative transfer calculations with hydrodynamic simulations of isolated disk galaxies and galaxy mergers. We demonstrate that the observed SFR-molecular line relations are driven by the relationship between molecular line emission and gas density, and anchored by the index of the underlying Schmidt law controlling the SFR in the galaxy. Lines with low critical densities (e.g. CO J=1-0) are typically thermalized and trace the gas density faithfully. In these cases, the SFR will be related to line luminosity with an index similar to the Schmidt law index. Lines with high critical densities greater than the mean density of most of the emitting clouds in a galaxy (e.g. CO J=3-2, HCN J=1-0) will have only a small amount of thermalized gas, and consequently a superlinear relationship between molecular line luminosity and mean gas density. This results in a SFR-line luminosity index less than the Schmidt index for high critical density tracers. One observational consequence of this is a significant redistribution of light from the small pockets of dense, thermalized gas to diffuse gas along the line of sight, and prodigious emission from subthermally excited gas. At the highest star formation rates, the SFR-Lmol slope tends to the Schmidt index, regardless of the molecular transition. The fundamental relation is the Kennicutt-Schmidt law, rather than the relation between SFR and molecular line luminosity. We use these results to make imminently testable predictions for the SFR-molecular line relations of unobserved transitions.Comment: ApJ Accepted - Results remain same as previous version. Content clarified with Referee's comment

    Smallholder Participation in Agricultural Value Chains: Comparative Evidence from Three Continents

    Get PDF
    Supermarkets, specialized wholesalers, and processors and agro-exporters’ agricultural value chains have begun to transform the marketing channels into which smallholder farmers sell produce in low-income economies. We develop a conceptual framework through which to study contracting between smallholders and a commodity-processing firm. We then conduct an empirical meta-analysis of agricultural value chains in five countries across three continents (Ghana, India, Madagascar, Mozambique, and Nicaragua). We document patterns of participation, the welfare gains associated with participation, reasons for non-participation, the significant extent of contract non-compliance, and the considerable dynamism of these value chains, as farmers and firms enter and exit frequently.Agricultural Value Chains, Contract Farming, Africa, Asia, Latin America
    corecore