2,092 research outputs found

    SPS program review transportation perspective

    Get PDF
    The delivery of cargo and space workers to the SPS construction site requires the development of two different systems, one to handle large cargo deliveries and a smaller system to accommodate crew. The overall scenario of the transportation system is shown. Eight major elements comprise the transportation system: personnel launch vehicle (PLV) or shuttle; personnel orbital transfer vehicle (POTV); the heavy lift launch vehicle (HLLV); the electric orbital transfer vehicle (EOTV); intra orbit transfer vehicle (IOTV); LEO support facility; GEO support facility and a shuttle derived HLLV (SDHLLV) for supporting the early SPS Demonstration Program. The HLLV and EOTV represent the cargo carriers while the PLV and POTV represent the people carriers. The IOTV is utilized to ferry people and cargo modules over short distances in the vicinity of its station

    Analysis of the Proposal to Abolish the Insanity Defense in S. 1: Squeezing a Lemon

    Get PDF

    Assessing the efficiency of first-principles basin-hopping sampling

    Full text link
    We present a systematic performance analysis of first-principles basin-hopping (BH) runs, with the target to identify all low-energy isomers of small Si and Cu clusters described within density-functional theory. As representative and widely employed move classes we focus on single-particle and collective moves, in which one or all atoms in the cluster at once are displaced in a random direction by some prescribed move distance, respectively. The analysis provides detailed insights into the bottlenecks and governing factors for the sampling efficiency, as well as simple rules-of-thumb for near-optimum move settings, that are intriguingly independent of the distinctly different chemistry of Si and Cu. At corresponding settings, the observed performance of the BH algorithm employing two simple, general-purpose move classes is already very good, and for the small systems studied essentially limited by frequent revisits to a few dominant isomers.Comment: 11 pages including 8 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Potential Energy Landscape of the Apparent First-Order Phase Transition between Low-Density and High-Density Amorphous Ice

    Full text link
    The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics for describing supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different than the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition are qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order-like phase transition between out-of-equilibrium states.Comment: 29 pages, 8 figure

    Nature of Ar bonding to small Co_n^+ clusters and its effect on the structure determination by far-infrared absorption spectroscopy

    Full text link
    Far-infrared vibrational spectroscopy by multiple photon dissociation has proven to be a very useful technique for the structural fingerprinting of small metal clusters. Contrary to previous studies on cationic V, Nb and Ta clusters, measured vibrational spectra of small cationic cobalt clusters show a strong dependence on the number of adsorbed Ar probe atoms, which increases with decreasing cluster size. Focusing on the series Co_4^+ to Co_8^+ we therefore use density-functional theory to analyze the nature of the Ar-Co_n^+ bond and its role for the vibrational spectra. In a first step, energetically low-lying isomer structures are identified through first-principles basin-hopping sampling runs and their vibrational spectra computed for a varying number of adsorbed Ar atoms. A comparison of these fingerprints with the experimental data enables in some cases a unique assignment of the cluster structure. Independent of the specific low-lying isomer, we obtain a pronounced increase of the Ar binding energy for the smallest cluster sizes, which correlates nicely with the observed increased influence of the Ar probe atoms on the IR spectra. Further analysis of the electronic structure motivates a simple electrostatic picture that not only explains this binding energy trend, but also why the influence of the rare-gas atom is much stronger than in the previously studied systems.Comment: 12 pages including 10 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Characterization of the Dynamics of Glass-forming Liquids from the Properties of the Potential Energy Landscape

    Get PDF
    We develop a framework for understanding the difference between strong and fragile behavior in the dynamics of glass-forming liquids from the properties of the potential energy landscape. Our approach is based on a master equation description of the activated jump dynamics among the local minima of the potential energy (the so-called inherent structures) that characterize the potential energy landscape of the system. We study the dynamics of a small atomic cluster using this description as well as molecular dynamics simulations and demonstrate the usefulness of our approach for this system. Many of the remarkable features of the complex dynamics of glassy systems emerge from the activated dynamics in the potential energy landscape of the atomic cluster. The dynamics of the system exhibits typical characteristics of a strong supercooled liquid when the system is allowed to explore the full configuration space. This behavior arises because the dynamics is dominated by a few lowest-lying minima of the potential energy and the potential energy barriers between these minima. When the system is constrained to explore only a limited region of the potential energy landscape that excludes the basins of attraction of a few lowest-lying minima, the dynamics is found to exhibit the characteristics of a fragile liquid.Comment: 13 pages, 6 figure

    Flexible Functional Forms and Global Curvature Conditions

    Get PDF
    Empirically estimated flexible functional forms frequently fail to satisfy the appropriate theoretical curvature conditions. Lau and Gallant and Golub have worked out methods for imposing the appropriate curvature conditions locally, but those local techniques frequently fail to yield satisfactory results. We develop two methods for imposing curvature conditions globally in the context of cost function estimation. The first method adopts Lau's technique to a generalization of a functional form first proposed by McFadden. Using this Generalized McFadden functional form, it turns out that imposing the appropriate curvature conditions at one data point imposes the conditions globally. The second method adopts a technique used by McFadden and Barnett, which is based on the fact that a non-negative sum of concave functions will be concave. Our various suggested techniques are illustrated using the U.S. Manufacturing data utilized by Berndt and Khaled
    corecore