3,847 research outputs found

    Energy transfer in finite-size exciton-phonon systems : confinement-enhanced quantum decoherence

    Full text link
    Based on the operatorial formulation of the perturbation theory, the exciton-phonon problem is revisited for investigating exciton-mediated energy flow in a finite-size lattice. Within this method, the exciton-phonon entanglement is taken into account through a dual dressing mechanism so that exciton and phonons are treated on an equal footing. In a marked contrast with what happens in an infinite lattice, it is shown that the dynamics of the exciton density is governed by several time scales. The density evolves coherently in the short-time limit whereas a relaxation mechanism occurs over intermediated time scales. Consequently, in the long-time limit, the density converges toward a nearly uniform distributed equilibrium distribution. Such a behavior results from quantum decoherence that originates in the fact that the phonons evolve differently depending on the path followed by the exciton to tunnel along the lattice. Although the relaxation rate increases with the temperature and with the coupling, it decreases with the lattice size, suggesting that the decoherence is inherent to the confinement

    SegICP: Integrated Deep Semantic Segmentation and Pose Estimation

    Full text link
    Recent robotic manipulation competitions have highlighted that sophisticated robots still struggle to achieve fast and reliable perception of task-relevant objects in complex, realistic scenarios. To improve these systems' perceptive speed and robustness, we present SegICP, a novel integrated solution to object recognition and pose estimation. SegICP couples convolutional neural networks and multi-hypothesis point cloud registration to achieve both robust pixel-wise semantic segmentation as well as accurate and real-time 6-DOF pose estimation for relevant objects. Our architecture achieves 1cm position error and <5^\circ$ angle error in real time without an initial seed. We evaluate and benchmark SegICP against an annotated dataset generated by motion capture.Comment: IROS camera-read

    Primary radiation as initial management in endometrial cancer: investigating EBRT, IMRT and HDR brachytherapy

    Get PDF
    For patients with endometrial cancer at increased risk of perioperative morbidity, primary radiation therapy is an effective alternative treatment option. However, there has been no consensus on radiation technique and little data on outcomes. Our aim was to identify factors which determine patient selection for primary radiation, investigate treatment efficacy of radiation compared to surgical management of endometrial cancer and to evaluate different radiation modalities including external beam radiation therapy alone or with a boost of either high dose rate brachytherapy or intensity-modulated radiation therapy for differences in toxicities, recurrence-free interval, cancer-specific survival and overall survival

    Real-Time Object Pose Estimation with Pose Interpreter Networks

    Full text link
    In this work, we introduce pose interpreter networks for 6-DoF object pose estimation. In contrast to other CNN-based approaches to pose estimation that require expensively annotated object pose data, our pose interpreter network is trained entirely on synthetic pose data. We use object masks as an intermediate representation to bridge real and synthetic. We show that when combined with a segmentation model trained on RGB images, our synthetically trained pose interpreter network is able to generalize to real data. Our end-to-end system for object pose estimation runs in real-time (20 Hz) on live RGB data, without using depth information or ICP refinement.Comment: To appear at 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018). Code available at https://github.com/jimmyyhwu/pose-interpreter-network

    Separating the influences of prereading skills on early word and nonword reading

    Get PDF
    The essential first step for a beginning reader is to learn to match printed forms to phonological representations. For a new word, this is an effortful process where each grapheme must be translated individually (serial decoding). The role of phonological awareness in developing a decoding strategy is well known. We examined whether beginning readers recruit different skills depending on the nature of the words being read (familiar words vs. nonwords). Print knowledge, phoneme and rhyme awareness, rapid automatized naming (RAN), phonological short-term memory (STM), nonverbal reasoning, vocabulary, auditory skills, and visual attention were measured in 392 prereaders 4 and 5 years of age. Word and nonword reading were measured 9 months later. We used structural equation modeling to examine the skills–reading relationship and modeled correlations between our two reading outcomes and among all prereading skills. We found that a broad range of skills were associated with reading outcomes: early print knowledge, phonological STM, phoneme awareness and RAN. Whereas all of these skills were directly predictive of nonword reading, early print knowledge was the only direct predictor of word reading. Our findings suggest that beginning readers draw most heavily on their existing print knowledge to read familiar words

    The Lantern Vol. 41, No. 2, Spring 1975

    Get PDF
    • Awakening • 10:27 • The Box • God\u27s Children • The Blasphemous Bean Beetle Levels Limpidland • First Flight • In April • Butterfly • In the Garden • The Emperor\u27s Pond • The Mob • Date with Destiny • While Awaiting Death • Sweet Jane • Final Thoughtshttps://digitalcommons.ursinus.edu/lantern/1106/thumbnail.jp
    • …
    corecore