313 research outputs found

    Measurements of Flavour Dependent Fragmentation Functions in Z^0 -> qq(bar) Events

    Get PDF
    Fragmentation functions for charged particles in Z -> qq(bar) events have been measured for bottom (b), charm (c) and light (uds) quarks as well as for all flavours together. The results are based on data recorded between 1990 and 1995 using the OPAL detector at LEP. Event samples with different flavour compositions were formed using reconstructed D* mesons and secondary vertices. The \xi_p = ln(1/x_E) distributions and the position of their maxima \xi_max are also presented separately for uds, c and b quark events. The fragmentation function for b quarks is significantly softer than for uds quarks.Comment: 29 pages, LaTeX, 5 eps figures (and colour figs) included, submitted to Eur. Phys. J.

    Search for Neutral Higgs Bosons in e+e- Collisions at sqrt(s) ~189GeV

    Full text link
    A search for neutral Higgs bosons has been performed with the OPAL detector at LEP, using approximately 170 pb-1 of e+e- collision data collected at sqrt(s)~189GeV. Searches have been performed for the Standard Model (SM) process e+e- to H0Z0 and the MSSM processes e+e- to H0Z0, A0h0. The searches are sensitive to the b b-bar and tau antitau decay modes of the Higgs bosons, and also to the MSSM decay mode h0 to A0A0. OPAL search results at lower centre-of-mass energies have been incorporated in the limits we set, which are valid at the 95% confidence level. For the SM Higgs boson, we obtain a lower mass bound of 91.0 GeV. In the MSSM, our limits are mh>74.8GeV and mA>76.5GeV, assuming tan(beta)>1, that the mixing of the scalar top quarks is either zero or maximal, and that the soft SUSY-breaking masses are 1 TeV. For the case of zero scalar top mixing, we exclude values of tan(beta) between 0.72 and 2.19.Comment: 38 pages, 15 figures, submitted Euro. Phys. J.

    Bose-Einstein Correlations in e+e- to W+W- at 172 and 183 GeV

    Get PDF
    Bose-Einstein correlations between like-charge pions are studied in hadronic final states produced by e+e- annihilations at center-of-mass energies of 172 and 183 GeV. Three event samples are studied, each dominated by one of the processes W+W- to qqlnu, W+W- to qqqq, or (Z/g)* to qq. After demonstrating the existence of Bose-Einstein correlations in W decays, an attempt is made to determine Bose-Einstein correlations for pions originating from the same W boson and from different W bosons, as well as for pions from (Z/g)* to qq events. The following results are obtained for the individual chaoticity parameters lambda assuming a common source radius R: lambda_same = 0.63 +- 0.19 +- 0.14, lambda_diff = 0.22 +- 0.53 +- 0.14, lambda_Z = 0.47 +- 0.11 +- 0.08, R = 0.92 +- 0.09 +- 0.09. In each case, the first error is statistical and the second is systematic. At the current level of statistical precision it is not established whether Bose-Einstein correlations, between pions from different W bosons exist or not.Comment: 24 pages, LaTeX, including 6 eps figures, submitted to European Physical Journal

    W+W- production and triple gauge boson couplings at LEP energies up to 183 GeV

    Get PDF
    A study of W-pair production in e+e- annihilations at Lep2 is presented, based on 877 W+W- candidates corresponding to an integrated luminosity of 57 pb-1 at sqrt(s) = 183 GeV. Assuming that the angular distributions of the W-pair production and decay, as well as their branching fractions, are described by the Standard Model, the W-pair production cross-section is measured to be 15.43 +- 0.61 (stat.) +- 0.26 (syst.) pb. Assuming lepton universality and combining with our results from lower centre-of-mass energies, the W branching fraction to hadrons is determined to be 67.9 +- 1.2 (stat.) +- 0.5 (syst.)%. The number of W-pair candidates and the angular distributions for each final state (qqlnu,qqqq,lnulnu) are used to determine the triple gauge boson couplings. After combining these values with our results from lower centre-of-mass energies we obtain D(kappa_g)=0.11+0.52-0.37, D(g^z_1)=0.01+0.13-0.12 and lambda=-0.10+0.13-0.12, where the errors include both statistical and systematic uncertainties and each coupling is determined setting the other two couplings to the Standard Model value. The fraction of W bosons produced with a longitudinal polarisation is measured to be 0.242+-0.091(stat.)+-0.023(syst.). All these measurements are consistent with the Standard Model expectations.Comment: 48 pages, LaTeX, including 13 eps or ps figures, submitted to European Physical Journal
    • …
    corecore