304 research outputs found

    The host galaxies of luminous radio-quiet quasars

    Full text link
    We present the results of a deep K-band imaging study which reveals the host galaxies around a sample of luminous radio-quiet quasars. The K-band images, obtained at UKIRT, are of sufficient quality to allow accurate modelling of the underlying host galaxy. Initially, the basic structure of the hosts is revealed using a modified Clean deconvolution routine optimised for this analysis. 2 of the 14 quasars are shown to have host galaxies with violently disturbed morphologies which cannot be modelled by smooth elliptical profiles. For the remainder of our sample, 2D models of the host and nuclear component are fitted to the images using the chi-squared statistic to determine goodness of fit. Host galaxies are detected around all of the quasars. The reliability of the modelling is extensively tested, and we find the host luminosity to be well constrained for 9 quasars. The derived average K-band absolute K-corrected host galaxy magnitude for these luminous radio-quiet quasars is =-25.15+/-0.04, slightly more luminous than an L* galaxy. The spread of derived host galaxy luminosities is small, although the spread of nuclear-to-host ratios is not. These host luminosities are shown to be comparable to those derived from samples of quasars of lower total luminosity and we conclude that there is no correlation between host and nuclear luminosity for these quasars. Nuclear-to-host ratios break the lower limit previously suggested from studies of lower nuclear luminosity quasars and Seyfert galaxies. Morphologies are less certain but, on the scales probed by these images, some hosts appear to be dominated by spheroids but others appear to have disk-dominated profiles.Comment: 16 pages, 8 figures, revised version to be published in MNRA

    Deep analysis of perception through dynamic structures that emerge in cortical activity from self-regulated noise

    Get PDF
    The statistical properties of the spontaneous background electrocorticogram (ECoG) were modeled, starting with random numbers, constraining the distributions, and identifying characteristic deviations from randomness in ECoG from subjects at rest and during intentional behaviors. The ECoG had been recorded through 8 × 8 arrays of 64 electrodes, from the surfaces of auditory, visual, or somatic cortices of 9 rabbits, and from the inferotemporal cortex of a human subject. Power spectral densities (PSD) in coordinates of log10 power versus log10 frequency of ECoG from subjects at rest usually conformed to noise in power-law distributions in a continuum. PSD of ECoG from active subjects usually deviated from noise in having peaks in log10 power above the power-law line in various frequency bands. The analytic signals from the Hilbert transform after band pass filtering in the beta and gamma ranges revealed beats from interference among distributed frequencies in band pass filtered noise called Rayleigh noise. The beats were displayed as repetitive down spikes in log10 analytic power. Repetition rates were proportional to filter bandwidths for all center frequencies. Resting ECoG often gave histograms of the magnitudes and intervals of down spikes that conformed to noise. Histograms from active ECoG often deviated from noise in Rayleigh distributions of down spike intervals by giving what are called Rice (Mathematical analysis of random noise—and appendixes—technical publications monograph B-1589. Bell Telephone Labs Inc., New York, 1950) distributions. Adding power to noise as signals at single frequencies simulated those deviations. The beats in dynamic theory are deemed essential for perception, by gating beta and gamma bursts at theta rates through enhancement of the cortical signal-to-noise ratio in exceptionally deep down spikes called null spikes

    Matching Bayesian and frequentist coverage probabilities when using an approximate data covariance matrix

    Get PDF
    Observational astrophysics consists of making inferences about the Universe by comparing data and models. The credible intervals placed on model parameters are often as important as the maximum a posteriori probability values, as the intervals indicate concordance or discordance between models and with measurements from other data. Intermediate statistics (e.g. the power spectrum) are usually measured and inferences are made by fitting models to these rather than the raw data, assuming that the likelihood for these statistics has multivariate Gaussian form. The covariance matrix used to calculate the likelihood is often estimated from simulations, such that it is itself a random variable. This is a standard problem in Bayesian statistics, which requires a prior to be placed on the true model parameters and covariance matrix, influencing the joint posterior distribution. As an alternative to the commonly used independence Jeffreys prior, we introduce a prior that leads to a posterior that has approximately frequentist matching coverage. This is achieved by matching the covariance of the posterior to that of the distribution of true values of the parameters around the maximum likelihood values in repeated trials, under certain assumptions. Using this prior, credible intervals derived from a Bayesian analysis can be interpreted approximately as confidence intervals, containing the truth a certain proportion of the time for repeated trials. Linking frequentist and Bayesian approaches that have previously appeared in the astronomical literature, this offers a consistent and conservative approach for credible intervals quoted on model parameters for problems where the covariance matrix is itself an estimate

    Non-Standard Structure Formation Scenarios

    Full text link
    Observations on galactic scales seem to be in contradiction with recent high resolution N-body simulations. This so-called cold dark matter (CDM) crisis has been addressed in several ways, ranging from a change in fundamental physics by introducing self-interacting cold dark matter particles to a tuning of complex astrophysical processes such as global and/or local feedback. All these efforts attempt to soften density profiles and reduce the abundance of satellites in simulated galaxy halos. In this contribution we are exploring the differences between a Warm Dark Matter model and a CDM model where the power on a certain scale is reduced by introducing a narrow negative feature (''dip''). This dip is placed in a way so as to mimic the loss of power in the WDM model: both models have the same integrated power out to the scale where the power of the Dip model rises to the level of the unperturbed CDM spectrum again. Using N-body simulations we show that that the new Dip model appears to be a viable alternative to WDM while being based on different physics: where WDM requires the introduction of a new particle species the Dip stems from a non-standard inflationary period. If we are looking for an alternative to the currently challenged standard LCDM structure formation scenario, neither the LWDM nor the new Dip model can be ruled out with respect to the analysis presented in this contribution. They both make very similar predictions and the degeneracy between them can only be broken with observations yet to come.Comment: 4 pages, 3 figures; to appear in "The Evolution of Galaxies III. From Simple Approaches to Self-Consistent Models", proceedings of the 3rd EuroConference on the evolution of galaxies, held in Kiel, Germany, July 16-20, 200

    The completed SDSS-IV extended baryon oscillation spectroscopic survey: Geometry and growth from the anisotropic void-galaxy correlation function in the luminous red galaxy sample

    Get PDF
    We present an analysis of the anisotropic redshift-space void-galaxy correlation in configuration space using the Sloan Digital Sky Survey extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 luminous red galaxy (LRG) sample. This sample consists of LRGs between redshifts 0.6 and 1.0, combined with the high redshift z > 0.6 tail of the Baryon Oscillation Spectroscopic Survey Data Release 12 CMASS sample. We use a reconstruction method to undo redshift-space distortion (RSD) effects from the galaxy field before applying a watershed void-finding algorithm to remove bias from the void selection. We then perform a joint fit to the multipole moments of the correlation function for the growth rate fσ 8 and the geometrical distance ratio DM/DH, finding f σ8 (zeff ) = 0.356 ± 0.079 and DM /DH (zeff ) = 0.868 ± 0.017 at the effective redshift zeff = 0.69 of the sample. The posterior parameter degeneracies are orthogonal to those from galaxy clustering analyses applied to the same data, and the constraint achieved on DM/DH is significantly tighter. In combination with the consensus galaxy BAO and full-shape analyses of the same sample, we obtain fσ 8 = 0.447 ± 0.039, DM/rd = 17.48 ± 0.23, and DH/rd = 20.10 ± 0.34. These values are in good agreement with the ΛCDM model predictions and represent reductions in the uncertainties of 13 per cent, 23 per cent, and 28 per cent, respectively, compared to the combined results from galaxy clustering, or an overall reduction of 55 per cent in the allowed volume of parameter space

    Light Relic Neutralinos

    Get PDF
    The relic abundance and the scalar cross{section o nucleon for light neutralinos (of mass m below about 45 GeV) are evaluated in an e ective MSSM model with R-parity conservation and without GUT{inspired relations among gaugino masses. It is shown that these neutralinos may provide a sizeable contribution to the matter density in the Universe CDM. By requiring that its relic abundance does not exceed the upper bound on CDM based on the new WMAP data, a lower bound on the neutralino mass m > 6 GeV is derived. These light neutralinos can also produce measurable e ects in WIMP direct detection experiments, and in particular could explain the modulation result recently con rmed by DAMA. Uncertainties in direct detection calculations due to the modeling of the WIMP velocity distribution function are also discussed

    An overview of the current status of CMB observations

    Full text link
    In this paper we briefly review the current status of the Cosmic Microwave Background (CMB) observations, summarising the latest results obtained from CMB experiments, both in intensity and polarization, and the constraints imposed on the cosmological parameters. We also present a summary of current and future CMB experiments, with a special focus on the quest for the CMB B-mode polarization.Comment: Latest CMB results have been included. References added. To appear in "Highlights of Spanish Astrophysics V", Proceedings of the VIII Scientific Meeting of the Spanish Astronomical Society (SEA) held in Santander, 7-11 July, 200

    Planting a Lyman alpha forest on AbacusSummit

    Get PDF
    The full-shape correlations of the Lyman alpha (Ly α) forest contain a wealth of cosmological information through the Alcock-Paczyński effect. However, these measurements are challenging to model without robustly testing and verifying the theoretical framework used for analysing them. Here, we leverage the accuracy and volume of the N-body simulation suite AbacusSummit to generate high-resolution Ly α skewers and quasi-stellar object (QSO) catalogues. One of the main goals of our mocks is to aid in the full-shape Ly α analysis planned by the Dark Energy Spectroscopic Instrument (DESI) team. We provide optical depth skewers for six of the fiducial cosmology base-resolution simulations (, N = 69123) at z = 2.5. We adopt a simple recipe based on the Fluctuating Gunn-Peterson Approximation (FGPA) for constructing these skewers from the matter density in an N-body simulation and calibrate it against the 1D and 3D Ly α power spectra extracted from the hydrodynamical simulation IllustrisTNG (TNG;, N = 25003). As an important application, we study the non-linear broadening of the baryon acoustic oscillation (BAO) peak and show the cross-correlation between DESI-like QSOs and our Ly α forest skewers. We find differences on small scales between the Kaiser approximation prediction and our mock measurements of the Ly α × QSO cross-correlation, which would be important to account for in upcoming analyses. The AbacusSummit Ly α forest mocks open up the possibility for improved modelling of cross-correlations between Ly α and cosmic microwave background (CMB) lensing and Ly α and QSOs, and for forecasts of the 3-point Ly α correlation function. Our catalogues and skewers are publicly available on Globus via the National Energy Research Scientific Computing Center (NERSC) (full link under the section 'Data Availability')

    Objective surface evaluation of fiber reinforced polymer composites

    Full text link
    The mechanical properties of advanced composites are essential for their structural performance, but the surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish properties of two fiber reinforced polymer (FRP) composite construction types (clear resin and gel-coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal components analysis was used to reduce the dimensionality of the texture feature vector, permitting successful classification of the samples using only the first principal component. This work extends and further validates the feasibility of this approach as the basis for automated non-contact classification of composite surface finish using image analysis.<br /

    Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management

    Get PDF
    Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems
    corecore