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A B S T R A C T 

Observational astrophysics consists of making inferences about the Universe by comparing data and models. The credible 
intervals placed on model parameters are often as important as the maximum a posteriori probability values, as the intervals 
indicate concordance or discordance between models and with measurements from other data. Intermediate statistics (e.g. the 
power spectrum) are usually measured and inferences are made by fitting models to these rather than the raw data, assuming 

that the likelihood for these statistics has multi v ariate Gaussian form. The covariance matrix used to calculate the likelihood is 
often estimated from simulations, such that it is itself a random variable. This is a standard problem in Bayesian statistics, which 

requires a prior to be placed on the true model parameters and covariance matrix, influencing the joint posterior distribution. As an 

alternative to the commonly used independence Jeffreys prior, we introduce a prior that leads to a posterior that has approximately 

frequentist matching co v erage. This is achiev ed by matching the covariance of the posterior to that of the distribution of true 
values of the parameters around the maximum likelihood values in repeated trials, under certain assumptions. Using this prior, 
credible interv als deri ved from a Bayesian analysis can be interpreted approximately as confidence intervals, containing the truth 

a certain proportion of the time for repeated trials. Linking frequentist and Bayesian approaches that have previously appeared in 

the astronomical literature, this offers a consistent and conserv ati ve approach for credible intervals quoted on model parameters 
for problems where the covariance matrix is itself an estimate. 
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 I N T RO D U C T I O N  

he problem of fitting a model to multi v ariate Normal (hereafter
eferred to as Gaussian) distributed data, where only an approxima- 
ion to the true data covariance matrix is available, often arises in
strophysics. In a Bayesian sense, the problem can be considered as
ointly fitting a model for the data and the covariance matrix, which
s a standard one in statistics with a long history. For Gaussian-
istributed data, the standard estimate of the covariance matrix is 
rawn from a Wishart distribution, such as when a covariance matrix 
s estimated using a limited number of simulations, or when a covari-
nce matrix is constructed from Jackknife samples (e.g. Norberg et al. 
009 ; Friedrich et al. 2016 ). Examples of cosmological inferences 
ade within this framework include the recent measurements from 

OSS and eBOSS (Alam et al. 2017 ; eBOSS Collaboration 2020 )
s well as the galaxy clustering part of Heymans et al. ( 2021 ). For
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nalyses of two-point statistics in line-of-sight projected data the 
ovariance matrix is often modelled analytically instead of estimating 
t from simulations (see e.g. Krause & Eifler 2017 ; Heymans
t al. 2021 ; DES Collaboration 2021 , for recent examples). This
s because the four-point functions constituting those covariances 
re accurately approximated in a Gaussian model, that is easy to
 v aluate (Friedrich et al. 2021 ; Joachimi et al. 2021 ). In contrast,
nalyses of non-standard summary statistics almost e xclusiv ely rely 
n estimated covariances because analytical covariance models are 
ot easily obtained for them (e.g. Kacprzak et al. 2016 ; Brouwer
t al. 2018 ; Gruen et al. 2018 ; Martinet et al. 2018 ; Halder et al.
021 ). 
There are two common ways to characterize our uncertainty 

bout a model parameter when comparing data and model, which 
ie at the heart of the difference between Bayesian and frequentist
pproaches. One can perform a Bayesian analysis using the poste- 
ior to define credible intervals, within which a model parameter 
alls with a particular probability given the prior information and 
xperimental data. One can also define a mechanism to produce 
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requentist confidence regions, a set proportion of which contain
he true parameters in repeated trials. For astrophysical problems
e can consider the trials to be experiments performed in parallel
niverses that are independent and identically distributed realizations
f the same data generating process (so the universal constants are
onsidered the same). Confidence regions determined, for example,
y the distribution of the difference between truth and the maximum
ikelihood solution, will not in general be the same as the credible
egions, and it is self-evidently wrong to identify them for asymmetric
istributions (see e.g. Loredo 2012 ). That they are not generally the
ame is evident since credible regions are clearly dependent on the
rior, while maximum likelihood estimates are not. In other words:
he fraction of times the credible intervals contain the true parameters
or repeated analyses (the frequentist co v erage probability) is not
ecessary equal to the posterior probability enclosed within these
nterv als. The dif ference has pre viously been used in astrophysics
o search for unrecognized biases during data analysis (Sellentin &
tarck 2019 ). 
In this paper, we seek a prior that gives a frequentist matching

osterior, so that we can define credible regions that have the property
hat, for a given parametrization, the x per cent credible regions
ontain the true parameter values in approximately x per cent of
epeated trials. This means that we can interpret the mechanism
sed to define these regions (the Bayesian mechanism) as providing
onfidence regions with a frequentist coverage probability that
atches the Bayesian probability associated with interpreting the

ame regions as credible regions. This match al w ays holds in the
symptotic limit of infinite data (the Bernstein–von Mises theorem),
hich includes having a perfect covariance matrix estimate; here our
rior ensures the distributions match at the level of equal parameter
ovariances, for Gaussian linear models and approximately for
onlinear models. 
Note that, in general, frequentist matching priors are not a panacea,

s they may not perform well in all circumstances, such as in
aking predictive distributions (Sun & Berger 2006 ), and they are

ot invariant to reparametrization. Note also that the differences
etween the different priors diminish, as expected, when the number
f simulations is large and the posterior is dominated by data. 
Before we introduce the problem further and the frequentist
atching solution, we introduce the notation adopted: x 0 are the

ompressed experimental data of dimension n d (e.g. a power spec-
rum), while x i is the simulated data with 1 ≤ i ≤ n s , assumed to be
aussian distributed around the true model. From the n s simulations,
e construct an unbiased estimate of the covariance matrix S , 

 = 

1 

n s − 1 

n s ∑ 

i= 1 

( x i − x̄ )( x i − x̄ ) T , (1) 

here x̄ is the mean of x i o v er all simulations. The expectation
alue of x 0 is μ, and � its (unknown) covariance. We only use
he simulated data to calculate S , and so we consider the data to
e ( x 0 , S). We will consider fitting a model with n θ parameters θ ,
uch that our model for the data is μ( θ ), while the covariance matrix
sed to form the posterior remains of dimension n d . Without loss of
enerality we shall assume that the expected values of μ and θ are
ero, such that they can be ignored in our equations and we can, for

xample, write the covariance for estimates of ˆ θ as 〈 ̂ θ ˆ θ
T 〉 . 

Errors in the covariance matrix used to determine the likelihood
ave a number of effects on the inferences we make from the data,
nd particularly the credible intervals quoted in a Bayesian analysis.
artlap, Simon & Schneider ( 2007 ) was the first to point out in the

stronomical literature that, for S calculated using equation (1) and
NRAS 510, 3207–3221 (2022) 
herefore drawn from a Wishart distribution with degrees of freedom
 s − 1 and scale matrix �/( n s − 1), S −1 is a biased estimator for the
nv erse co variance matrix � 

−1 , whereas ( hS ) −1 is not, where 

 = 

n s − 1 

n s − n d − 2 
(2) 

s commonly (by astronomers) called the Hartlap factor (although
nowledge of this effect reaches at least as far back as Kaufman
967 ). We discuss the application of the Hartlap factor further in
ection 8. 
Taking a frequentist stance, Dodelson & Schneider ( 2013 ) and

aylor & Joachimi ( 2014 ) showed that the nature of S has a strong
ffect on the confidence intervals derived based on the distribution
f maximum a posteriori probability (MAP) model parameters
commonly called the best-fitting parameters). In fact, we will show
ater that for the priors and linear models that we consider, the

aximum likelihood and MAP parameters are the same. So, we could
ave considered this distribution as the distribution of maximum
ikelihood solutions. Ho we ver, as most analyses only work with the
osterior, we simply refer to these as the MAP model parameters.
odelson & Schneider ( 2013 ) provided a second-order calculation
eriving the distribution of MAP model parameters reco v ered after
epeated e xperiments, av eraging o v er a set of estimated co variance
atrices. This deri v ation is re vie wed in Section 3.3. Perci v al et al.

 2014 ) pointed out that the offset found by Dodelson & Schneider
 2013 ) cannot be applied directly to change credible intervals as the
verage posterior from a set of repeated experiments itself depends on
he distribution of S , and they provided a factor by which the credible
ntervals reco v ered assuming a Gaussian posterior could be adjusted
o match the confidence intervals obtained from the distribution of

AP parameters reco v ered from mocks. This is discussed further in
ection 7. 
The Bayesian solution was introduced in the astronomical lit-

rature by Sellentin & Heavens ( 2016 ) based on the independence
effreys prior and marginalizing over the unknown covariance matrix.
he resulting posterior has multi v ariate t-distribution form. The
eri v ation follo ws from Bayes theorem, starting from the joint
osterior 

 ( μ, �| x 0 , S) ∝ f ( x 0 , S| μ, �) f ( μ, �) , (3) 

here f ( μ, �) is the prior, and f ( x 0 , S| μ, �) the likelihood.
ecause of the independence of x 0 and S , the likelihood can be
ritten 

 ( x 0 , S| μ, �) = f ( x 0 | μ, � ) f ( S| � ) . (4) 

o make model inferences, we wish to know the distribution of the
ata-generating mechanism (or its parameters) given the data and S ,
hich we can calculate by marginalizing o v er the true covariance: 

 ( μ| x 0 , S) = 

∫ 
d � f ( μ, �| x 0 , S) . (5) 

The key question in a Bayesian analysis performed under these
onditions is the form for the prior proposed for μ and the covariance
atrix. Sun & Berger ( 2006 ) listed a number of options for prior

hoices, including the Jeffreys prior, 

 ( μ, �) ∝ | �| − n d + 2 
2 , (6) 

nd independence Jeffreys prior (adopted by Sellentin & Heavens
016 ), 

 ( μ, �) ∝ | �| − n d + 1 
2 . (7) 
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iesser & Cornfield ( 1963 ) consider a range of priors 

 ( μ, �) ∝ | �| −v , (8) 

here v is an integer with v ≤ n s . Various other potential priors have
lso been introduced (e.g. Haar prior, right-Haar prior, left-Haar prior, 
hang & Eaves 1990 reference prior) with more complicated forms. 
ach has advocates and interesting properties in various situations. 
The prior that we introduce is a member of the class of frequentist
atching priors (Lindley 1958 ; Welch & Peers 1963 ; Reid, Muk-

rjee & Fraser 2003 ), designed to match a posterior to frequentist
xpectations. A discussion of such priors is given in Ghosh ( 2011 ).
riors that match posterior predictive probabilities with the corre- 
ponding frequentist probabilities are attractive when constructing 
redible/confidence intervals. In general, matching priors can be 
onstructed only for particular models and matching is determined by 
he order of approximation to the integrated probability. The selection 
f a matching prior is usually accompanied by a discussion of the
egree of matching, with various definitions of matching available 
e.g. Reid et al. 2003 ). Although matching is usually considered 
etween cumulative probabilities, we match on the expected model 
arameter covariance. This second moment is commonly used as the 
asis for model parameter confidence intervals in physics, and can 
e broadly interpreted as fixing the multidimensional ‘width’ of a 
istribution. 
Matching priors are candidates for non-informative priors in 

ayesian inference, in that it is often assumed (explicitly or not) that
he frequentist-style determination of confidence intervals incorpo- 
ates no information from a prior. Really, there is simply no such thing
s a non-informative prior. The frequentist philosophy is different 
rom the Bayesian approach and provides different guarantees across 
otionally repeated experiments. Ho we ver, gi ven that the concept of
errors’ is often interpreted according to the frequentist philosophy, 
e think there is merit in making the widths of the errors consistent.
Matching priors (and frequentist analyses) violate the Likelihood 

rinciple by using priors that vary with the sampling distribution of
he experiment to be performed and the dimension of the model 
arameter space on to which the data distribution is projected. 
o we v er, in general the y only rely on the performance characteristics
f that distribution under repeated sampling, as a way to ‘break 
he tie’ among a choice of prior distributions, in order to draw an
nference. Thus, while there is debate about their validity and usage, 
t is clear that there are situations where they are useful. 

In this paper, we argue that the analyses presented in Hartlap 
t al. ( 2007 ) and Dodelson & Schneider ( 2013 ) provide a method
or calculating frequentist based confidence intervals for model 
arameters, and we show that these can be matched to credible 
ntervals obtained from a Bayesian analysis as advocated by Sellentin 
 Heavens ( 2016 ). A similar calculation was performed by Perci v al

t al. ( 2014 ) but we now use the methodology and resulting form for
he posterior adopted by Sellentin & Heavens ( 2016 ), albeit using a
ifferent prior. This demonstrates how these different methods are 
elated and the different assumptions being (sometimes implicitly) 
ade when adopting one of these procedures for determining and 

uoting the co v erage probability associated with an interval. The 
requentist matched credible intervals are larger than those from 

ayesian analyses with previously used priors, and hence this 
atching can also be considered conserv ati ve for inferences made 

rom experiments. 
The layout of our paper is as follows: Section 2 introduces the

ayesian problem that we want to solve, and considers how the 
osterior depends on the prior chosen, extending the Sellentin & 

eavens ( 2016 ) approach to more general priors. Section 3 considers
robabilities under the posterior and relates them to the distribution 
f the truth after repeated trials, allowing us to define a frequentist
atching prior in Section 4. Section 5 demonstrates this approach 

sing the simple problem of fitting a mean to correlated data, using
oth analytic deri v ations and Monte Carlo simulations. We apply
ur approach to a realistic cosmological analysis in Section 6, fitting
ock tomographic cosmic shear data vector including auto- and 

ross-correlations matching that expected from the 5-year data of the 
ark Energy Surv e y, demonstrating that this works well in a practical

est, providing Bayesian credible intervals on model parameters that 
atch the expected frequentist confidence intervals. We summarize 

ur proposed method in Section 7, and conclude in Section 8. 

 C H O I C E  O F  PRI OR  TO  USE  IN  A  M O D E L  FIT  

n this section we consider a full Bayesian analysis of the problem,
onsidering different choices for the prior. 

.1 Posterior with an independence Jeffreys prior 

he uninformative nature of the independence Jeffreys prior in 
eneral was introduced at the very start of Bayesian statistics (Jeffreys
939 ) and is discussed in this specific situation in Sun & Berger
 2006 ). It assumes for Gaussian data a uniform prior for the means,
nd a Jeffreys prior for the covariance matrix with means given
Berger & Sun 2008 ). The deri v ation of the posterior using this choice
f prior, and application to astronomical situations was presented in 
ellentin & Heavens ( 2016 ). 
We assume the independence Jeffreys joint prior on the expectation 

alue of the data and its covariance matrix given by equation (7). To
alculate the required posterior using equation (3), we first note that
 follows a Wishart distribution, f W 

, and we can write 

 ( �| S) ∝ f W 

( S| �/ ( n s − 1) , n s − 1) f ( μ, �) , (9) 

∝ | � | − n s + n d 
2 exp 

[
−n s − 1 

2 
T r( � 

−1 S) 

]
, (10) 

∝ f W 

−1 ( �| ( n s − 1) S, n s − 1) , (11) 

hich shows how, with this prior, the posterior for � has an
n verse W ishart distribution, f W 

−1 . The definitions of the multi v ariate
istributions used in our work are included in Appendix A. 
We now multiply by the Gaussian likelihood f N ( x 0 | μ, �), which

s simplest to consider in the form given in Appendix A, and integrate
 v er � to find that 

 ( μ| x 0 , S) ∝ 

∫ 
d � | � | − n s + n d + 1 

2 exp 

[
−1 

2 
T r( � 

−1 Q ) 

]
, (12) 

here 

 = ( n s − 1) S + ( x 0 − μ)( x 0 − μ) T . (13) 

his is an integral over the unnormalized inverse Wishart distribu- 
ion (with parameter n s ), so we can read off the result from the
ormalization constant in equation (A2). 

 ( μ| x 0 , S) ∝ | Q | − n s 
2 . (14) 

omparing with the form of the multi v ariate t-distribution in equa-
ion (A4), we see that 

 ( μ| x 0 , S) = f t,n s −n d 

(
μ

∣∣∣∣x 0 , n s − 1 

n s − n d 
S 

)
, (15) 
MNRAS 510, 3207–3221 (2022) 
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hich has mean x 0 and covariance 

 ( μ − x 0 )( μ − x 0 ) T 〉 = 

n s − 1 

n s − n d − 2 
S = hS. (16) 

The use of the multi v ariate t -distribution as a replacement for the
aussian assumption is often advocated on the grounds of robustness

o outliers (Lange, Little & Taylor 1989 ), with the parameter ν, which
n our context is n s − n d used as a robustness tuning factor. In this
ection we have shown how it also arises when the covariance matrix
s itself a random variable. It is also interesting to see that, with
n independence Jeffreys prior, the Hartlap factor emerges in the
eco v ered co variance, which could be considered natural given that
sing this prior brings in no further information on the posterior,
nd the inclusion of the Hartlap factor in some sense unbiases the
osterior cov ariance. Ho we ver, inferences made from the posterior
bout the covariance on model parameters are biased by the inclusion
f this factor - while it unbiases the posterior against repeated trials
f S , inferences about model parameter covariances made from the
osterior are biased - and so it is not clear that this is what we actually
ant (see Section 8 for further discussion of this). We also note

hat a Gaussian posterior with a Hartlap correction yields a posterior
ovariance that agrees with that derived here, but has tail probabilities
hat are lower than the t-distribution, and may be in considerable
rror when data sets in tension are discussed and compared (see
ppendix D). 
In the next section we see that the multi v ariate t-distribution form

or the posterior follows from any prior that is a power-law in | �| ,
nd that the exponent of the po wer-law af fects the reco v ered credible
ntervals. 

.2 Posterior with a general power-law prior 

et us now consider a more general joint prior on the mean and
ovariance matrix 

 ( μ, �) ∝ | �| − m −n s + n d + 1 
2 . (17) 

he independence Jeffreys prior of Sellentin & Heavens ( 2016 )
orresponds to m = n s . Both priors are uniform in the mean, which
akes sense for a location parameter. The exact linear form for the

xponent is chosen to simplify the downstream analysis, but is not
mportant. It changes our conditional likelihood 

 ( �| S) ∝ | �| − m + n d 
2 exp 

[
−n s − 1 

2 
T r( � 

−1 S) 

]
, (18) 

nd we now have that 

 ( μ| x 0 , S) ∝ 

∫ 
d � | � | − m + n d + 1 

2 exp 

[
−1 

2 
T r( � 

−1 Q ) 

]
, (19) 

here Q is given by equation (13). The form of this equation still
atches that of an unnormalized inverse Wishart distrib ution, b ut
ith different parameters, so we now have 

 ( μ| x 0 , S) ∝ | Q | − m 
2 . (20) 

ollowing through the derivation, 

 ( μ| x 0 , S) = f t,m −n d 

(
μ

∣∣∣∣x 0 , n s − 1 

m − n d 
S 

)
. (21) 

rom the known properties of the multivariate t -distribution, this has
ean x 0 and covariance 

 ( μ − x 0 )( μ − x 0 ) T 〉 = 

n s − 1 

m − n − 2 
S. (22) 
d 

NRAS 510, 3207–3221 (2022) 
s expected, setting m = n s gets us back to equation (16), and
n e xpected co variance of hS . The co variance reco v ered from the
istribution is directly related to the prior through m - as is natural in
 Bayesian analysis. 

 M O D E L  PARAMETER  C OVA R I A N C E S  F RO M  

OSTERI ORS  A N D  F RO M  T H E  PA R A M E T E R  

I STRI BU TI ON  

e now consider different methods for characterizing our uncer-
ainty about model parameters by comparing the model parameter
ovariances calculated using different assumptions. 

Given a set of data ( x 0 , S) and a prior parametrized by m , we first
etermine the Fisher matrix (Section 3.1) and then consider the model
arameter cov ariance deri ved by computing probabilities under the
osterior (Section 3.2). In order to construct a matching prior, for
robabilities estimated using the Fisher matrix and probabilities
alculated under the posterior, we need to determine the frequentist
o v erage probability that can be associated with the derived credible
ntervals. F ormally, the co v erage probability is a property of the
rocedure for constructing frequentist confidence intervals, and gives
he proportion of repeated trials for which the interval contains the
rue value of interest. As we want to be able to interpret x per cent
redible intervals as x per cent confidence intervals, we need to
alculate the average size of the credible intervals of fixed probability
 v er repeated trials. Finding the prior for which this is equal to the
robability of finding the truth within each interval after repeated
rials would then mean that we could interpret Bayesian credible
ntervals containing a particular probability with the same co v erage
robability . For simplicity , we work with the covariance rather
han the intervals directly and hence we wish to know the average

odel parameter covariance recovered from the Fisher matrix or the
osterior o v er repeated trials. F or this, the multi v ariate t-distribution
osterior has some differences from the expectation for a Gaussian
osterior because the covariance of the posterior around the MAP
odel parameters depends on x 0 in addition to S . Consequently, the

istribution assumed for the data is important as we demonstrate by
ontrasting results assuming the data is drawn from a t-distribution,
r from a Gaussian as is correct for our problem. The dependence of
he model parameter covariance on x 0 also affects data compression
s we show in Appendix C. 

We contrast the covariance estimated by integrating under the
osterior with that calculated for the distribution of MAP solutions
iven the truth in Section 3.3, formally showing that, for our problem,
he y are v ery different for most choices of prior. In Section 4 we
resent the prior that matches these results. 

.1 Using the Fisher matrix 

he Fisher information matrix (or simply the Fisher matrix), defined
s 

 ( θ ) αβ = E 

[(
∂ 

∂θα

log f ( x 0 | θ) 

)(
∂ 

∂θβ

log f ( x 0 | θ) 

)]
, (23) 

s a function of the likelihood. In Bayesian inference, the Bernstein–
on Mises theorem provides the basis for using the Fisher matrix
o provide confidence statements on parametric models, and the
ram ́er-Rao theorem shows that it forms a lower bound for the
ovariance of unbiased estimators of θ . In our case, we work from
he posterior, as given in equation (21), and convert this to a likelihood
ssuming a uniform prior (albeit possibly improper) on the model
arameters. Thus, in this section, we are not calculating the Fisher
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atrix from the true likelihood of the data (remember that x 0 are 
rawn from a Gaussian distribution with covariance �), but instead 
e use the Fisher matrix to estimate the expected information given 

he form of the posterior assumed. 
We start by assuming that, around the peak of the posterior, we

an define a patch of parameter space for which we can apply Bayes
heorem to equation (21) with a uniform prior on μ. For this patch
he likelihood for x 0 is 

 ( x 0 | μ, S) = f t,m −n d 

(
x 0 

∣∣∣∣μ, 
n s − 1 

m − n d 
S 

)
. (24) 

he Fisher information matrix for the multi v ariate t -distribution with
egrees of freedom ν and covariance � (Lange et al. 1989 ; Sellentin
 Heavens 2017 ) is 

 t = 

ν( ν + n d ) 

( ν − 2)( ν + n d + 2) 

∂ μ

∂ θ

T 

� 

−1 ∂ μ

∂ θ
. (25) 

e see an extra term compared with the true Fisher Information 
atrix if the covariance matrix were known: 

 � = 

∂ μ

∂ θ

T 

� 

−1 ∂ μ

∂ θ
. (26) 

or completeness, the Gaussian Fisher Information matrix with 
ovariance matrix S is 

 S = 

∂ μ

∂ θ

T 

S −1 ∂ μ

∂ θ
. (27) 

or the likelihood of equation (24), we have ν = m − n d degrees of
reedom and a covariance ( n s − 1) S /( m − n d − 2), so we have 

 t = 

m ( m − n d ) 

( m + 2)( n s − 1) 
F S . (28) 

his is the t -distribution Fisher matrix given the approximate scale 
atrix S . 
As discussed at the start this section, we also want to determine

he average credible interval that would be reco v ered giv en a set of
ealizations of S drawn from a Wishart distribution (i.e. by observers
n parallel universes). To calculate this, we note that a property of
he Wishart distribution is that for 

 ( S| �) = f W 

( S| �/ ( n s − 1) , n s − 1) , (29) 

nd M a n θ × n d matrix, then 

 (( M S −1 M 

T ) −1 | �) 

= f W 

(
( M S −1 M 

T ) −1 

∣∣∣∣ ( M � 

−1 M 

T ) −1 

n s − 1 
, n s − n d + n θ − 1 

)
, (30) 

see theorem 3.2.11 of Muirhead 1982 ). Thus, from equation (27),
nd using the mean of the Wishart distribution, we have that 

F 

−1 
S 

〉
S 

= 

n s − n d + n θ − 1 

n s − 1 
F 

−1 
� . (31) 

his equation can also be approximated by writing ( hS ) −1 as a
erturbation around � 

−1 and considering the second-order terms, 
s discussed in Appendix B, and used in Perci v al et al. ( 2014 ). 

For the t -distribution Fisher matrix, from equation (28), we have 
hat 

 F 

−1 
t 〉 S = 

( m + 2)( n s − n d + n θ − 1) 

m ( m − n d ) 
F 

−1 
� . (32) 

his shows that the error in the covariance matrix has an additional
ffect on the average model parameter credible intervals derived from 

 set of realizations of the scale matrix. 
.2 Computing probabilities under the posterior 

e now consider credible intervals derived by computing proba- 
ilities under the posterior, based on the second moment of the
istribution. While the Fisher matrix gives the form of the likeli-
ood around the expected value, calculating probabilities under the 
osterior is the more common approach used for model parameter 
redible interval determination. We consider the case where we have 
 linear model with μ = E θ , for some generally non-square matrix
 . Using equation (21) the posterior can be written 

 ( θ | x 0 , S) ∝ 

[
1 + 

1 

n s − 1 
( x 0 − E θ ) T S −1 ( x 0 − E θ ) 

]− m 
2 

. (33) 

his can be manipulated to describe the posterior as a distribution
round the MAP estimate. For a simple example of this for a Gaussian
osterior, and a single-parameter model - fitting the mean to data - see
ppendix E1. The same deri v ation can be seen in Appendix E2 for

he case of fitting the mean using a t -distribution posterior. Keeping
o a more general linear model, expanding the distrib ution, we ha ve 

 ( θ | x 0 , S) 

∝ 

[ 

1 + 

x T 0 S 
−1 x 0 − 2 θT E 

T S −1 x 0 + θT E 

T S −1 E θ

n s − 1 

] − m 
2 

, (34) 

sing the symmetry of S −1 to simplify the cross terms. Setting F S =
 

T S −1 E and g = E 

T S −1 x 0 gives 

 ( θ | x 0 , S) 

∝ 

[ 

1 + 

x T 0 S 
−1 x 0 − g T F 

−1 
S g + 

(
θ − F 

−1 
S g 

)T 
F S 

(
θ−F 

−1 
S g 

)
n s − 1 

] − m 
2 

. 

(35) 

o finish the deri v ation, we need to complete the square, noting that
f we now define 

y = 

(
θ − F 

−1 
S g 

)( n s − 1 

m − n θ

)− 1 
2 
[ 

1 + 

x T 0 S 
−1 x 0 − g T F 

−1 
S g 

n s − 1 

] − 1 
2 

, 

(36)

hen the posterior reduces to the simple form 

 ( θ | x 0 , S) ∝ 

[ 

1 + 

y T F 

−1 
S y 

m − n θ

] − m 
2 

. (37) 

his shows that y is distributed with a multi v ariate t-distribution
ith m − n θ degrees of freedom, such that the mean 〈 y 〉 = 0 , and

ovariance 〈 y y T 〉 = ( m − n θ ) F 

−1 
S / ( m − n θ − 2). 

We can write θ in the form θ = a y + b, which has the property
hat 〈 θ〉 = a〈 y 〉 + b, and 〈 ( θ − ˆ θ )( θ − ˆ θ ) T 〉 = a 2 〈 y y T 〉 . From this,
e see that the distribution of θ has mean ˆ θ = 〈 θ〉 = F 

−1 
S g . The

ovariance of θ around this for any value of x 0 and S is 

 ( θ − ˆ θ )( θ − ˆ θ ) T 〉 = 

n s − 1 

m − n θ − 2 
F 

−1 
S 

×
[ 

1 + 

x T 0 S 
−1 x 0 − g T F 

−1 
S g 

n s − 1 

] 

. (38) 

or a linear model, this expression can be used instead of integrating
nder the posterior for any realization of the data ( x 0 , S). Crucially,
nlike the equi v alent calculation for the Gaussian distribution (see
ppendix E1 for this calculation in the special case of fitting the
ean to data), the model parameter covariance depends on the value
MNRAS 510, 3207–3221 (2022) 
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f x 0 . Thus, the size of the credible intervals we derive from our fit
ill change if we change the data. 
We now consider the model parameter co variance reco v ered by

ntegrating under the posterior, averaged over a set of values of x 0 
nd S . We start by considering x 0 distributed according to the t -
istribution, and a Wishart distributed S . Ho we ver, while we adopt a
osterior that has multi v ariate t -distribution form, the data itself are
ctually Gaussian distributed with covariance �, and so we consider
his case afterwards. 

.2.1 Data distributed according to the t-distribution 

e can now calculate the expected covariance recovered for the
odel parameters, averaging over multiple realizations of the data

 x 0 , S). We start by assuming that the same covariance matrix
pproximation S is used for all realizations. In this case, F 

−1 
S is

xed, and we need to replace the terms x T 0 S 
−1 x 0 and g T F 

−1 
S g by

he rele v ant expected v alues. To calculate these, we make use of
he fact that we have set up the problem such that 〈 x 0 〉 is the zero
ector, and make use of the identity x T 0 S 

−1 x 0 = T r( S −1 x 0 x T 0 ). We
nd that, for a set of data drawn from a multi v ariate t-distribution as

n equation (24), we have 

x T 0 S 
−1 x 0 

〉
x 

= 

n s − 1 

m − n d − 2 
n d , (39) 

g T F 

−1 
S g 

〉
x 

= 

n s − 1 

m − n d − 2 
n θ . (40) 

utting these values in to equation (38), the covariance for θ reduces
o 

 ( θ − ˆ θ )( θ − ˆ θ ) T 〉 x = 

n s − 1 

m − n d − 2 
F 

−1 
S . (41) 

he e xpectation o v er multiple S matrices dra wn from a Wishart
istribution can easily be calculated using equation (31), 

 ( θ − ˆ θ )( θ − ˆ θ ) T 〉 x,S = 

n s − n d + n θ − 1 

m − n d − 2 
F 

−1 
� . (42) 

.2.2 Gaussian distributed data 

or a set of data drawn from a Gaussian distribution with covariance
, we have 

x T 0 S 
−1 x 0 

〉
x 

= T r[ S −1 �] , (43) 

g T F 

−1 
S g 

〉
x 

= T r[ F 

−1 
S E 

T S −1 �S −1 E] . (44) 

To go one step further and consider the expected model parameter
ov ariance allo wing for multiple S matrices drawn from a Wishart
istribution, we now need to find expressions for the expectation of
ll of the terms in equation (38). We have equation (31) for 〈 F 

−1 
S 〉 S ,

nd 

F 

−1 
S T r[ S −1 �] 

〉
S 

� [ n d + B( n d ( n θ + 1) − 2)] F 

−1 
� , (45) 

F 

−1 
S T r[ F 

−1 
S E 

T S −1 �S −1 E] 
〉

S 
� [ n θ + B( n θ ( n d + 1) − 2)] F 

−1 
� , 

(46) 

here B is given in equation (B2). To get these expressions, we have
sed the perturbative expressions as described in Appendix B. 
The end result is that we should expect the average model

arameter co variance reco v ered inte grating under the posterior after
epeated trials where the data is drawn from a Gaussian distribution
NRAS 510, 3207–3221 (2022) 
ith true covariance �, and S is drawn from a Wishart distribution
o be 

 ( θ − ˆ θ )( θ − ˆ θ ) T 〉 x,S � 

n s − 1 + B( n d − n θ ) 

m − n θ − 2 
F 

−1 
� , (47) 

o second order. The difference between this expression and that
f equation (42) shows the importance of the distribution of x 0 in
alculating the average model parameter covariance recovered. The
ituation with Gaussian distributed data matches the set-up of our
roblem: that of considering observers in multiple universes. 

.3 The distribution of the difference between MAP estimate 
nd the truth 

e now contrast these estimates of the model parameter covariance
gainst the distribution of reco v ered maximum a posteriori model
arameter values reco v ered from reruns of the experiment being
erformed. A linear model is assumed, so we have the symmetry
hat the distribution of MAP solutions about the truth is the same
s the distribution of the truth around a particular MAP solution
when the truth is sampled from a uniform prior). By comparing
he results in Section 3.2 to those from a Gaussian posterior, we see
hat the MAP estimate for the model parameters is the same whether
sing a Gaussian or t -distribution posterior and so we do not need to
istinguish between these choices. 
We therefore start assuming a Gaussian posterior distribution as

n Dodelson & Schneider ( 2013 ). As discussed in Section 3.2, the
AP estimate for a linear model can be written 

ˆ = F 

−1 
S g = F 

−1 
S E 

T S −1 x 0 , (48) 

hich can also be reco v ered as the first-order solution for more
eneral models by Taylor expanding the posterior around the MAP
stimates of the model parameters. Here we have assumed, without
oss of generality, that the true values are ˆ θ = 0 . 

We can now obtain an estimate of the scatter on model parameters
rovided by different experiments, where we consider different x 0 
rawn from a Gaussian distribution, and S from a Wishart distribution
iven the true model 〈 ̂ θT ˆ θ〉 x,S . To do this, we use the fact that
 x 0 x T 0 〉 x = �, so that 

 ̂

 θ ˆ θ
T 〉 x = 

〈
F 

−1 
S E 

T S −1 �S −1 EF 

−1 
S 

〉
. (49) 

his can be solved to second order, using the expression in equa-
ion (B1), considering an expansion of ( hS ) −1 around � 

−1 . As
escribed in Appendix B, the second-order solution is 

 ̂

 θ ˆ θ
T 〉 x,S � [ 1 + B( n d − n θ ) ] F 

−1 
� , (50) 

hich is the distribution of MAP estimates made from a set of sim-
lations that is independent of those used to estimate the covariance
atrix S . This was the primary result of Dodelson & Schneider

 2013 ). Because we assume a linear model, this model parameter
ovariance is also that of the distribution of the truth around the
AP solution, assuming a uniform prior on the model parameters. It

s therefore the covariance of the distribution from which frequentist
onfidence intervals on model parameters are derived. 

 FREQUENTIST  M AT C H I N G  P R I O R  

e now consider how to derive a matching prior that will allow
he average model parameter cov ariance deri ved from the Bayesian
nalysis described abo v e to match the reco v ered co variance of the
ruth around the MAP estimate. To do this, we compare and match
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Figure 1. Variation of the power-law exponent m match required for a prior that, on average over repeated trials gives a posterior with covariance that matches 
that expected for the distribution of MAP values (solid lines as given in equation (51)). We sho w ho w m match / n s v aries with n s (x-axis), n d (different lines), and 
n θ (different panels). 
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quations (47) and (50) to derive a Bayesian posterior parametrized 
y m match that gives a posterior distrib ution that, a veraged over
ultiple trials, has a model parameter covariance that matches the 

istribution of MAP estimates that we would get from repeating the 
xperiment. This assumes that, for these repeated trials, x 0 is drawn 
rom a Gaussian distribution around the true cosmological model. In 
his case, the equation for m match is 

 match = n θ + 2 + 

n s − 1 + B( n d − n θ ) 

1 + B( n d − n θ ) 
. (51) 

The resulting values of m match are compared in Fig. 1 for a range
f values of n s , n d , and n θ . As can be seen, m match tends towards
he Sellentin & Heavens ( 2016 ) solution m = n s for large values
f n s . Ho we ver, there are dif ferences, especially when n s ∼ n d 
nd the posterior is more influenced by the prior than when many
ore simulations are available. We note that this is derived under 
 number of assumptions, particularly that of a linear model, and 
o this is still an approximation to a true matched posterior given
 more complicated shape and non-linear model dependence. In 
articular, we caution that the moment-matching prior is not invariant 
o reparametrization. We find that the exponent for n d = 2, n θ = 1
s very close to that derived from the right-Haar prior (based on
holesky decomposition of the covariance matrix), which has some 
xact matching properties for Gaussian variables (Sun & Berger 
006 ). 
 TESTING  WI TH  A  SIMPLE  M E A N  FITTING  

O D E L  

he resulting covariance matrix for the model parameters is tested 
nd explored by considering a simple model - that of fitting a mean
alue to correlated data. We create Monte Carlo simulations that step
hrough different realizations of the data (Gaussian distributed with 
ovariance �, chosen for convenience to be the identity matrix) and
nalysed with covariance matrix S drawn from a Wishart distribution 
degrees of freedom n s − 1 and scale matrix �). Inferences are made
bout credible intervals assuming different choices for the posterior, 
nd the derived estimates of the model parameter covariances are then 
v eraged o v er multiple realizations. Av eraging o v er realizations of
he data and covariance matrix S in this way most naturally follows
he ethos behind the deri v ation in Section 3.2. We also record the

AP estimates for the model, and consider the distribution of these
AP estimates around the true values and measure the variance of

his distribution. 
We create large numbers of realizations of data x 0 and covariance 
atrices S and then fit to each assuming different expressions for

he posterior. For each covariance matrix S , we create n s different
ersions of x 0 , and we create 100 000 dif ferent cov ariance matrices.
o speed up these calculations we use analytic marginalization o v er

he posterior for each S , as outlined in Appendix E, rather than
umerically integrating under the posterior for each, and use library 
outines to calculate realizations of Wishart matrices. We still use 
MNRAS 510, 3207–3221 (2022) 
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Figure 2. Av erage reco v ered model parameter v ariance calculated in dif fer- 
ent ways when fitting the mean ̄μ, to a set of correlated Gaussian data. The grey 
solid line shows the result that would have been obtained from the posterior 
if we had known the data covariance matrix perfectly, taking the confidence 
interval as the root of the variance. The black solid line (model from Dodelson 
& Schneider 2013 ) and solid black points (Monte Carlo measurements) show 

the root of the variance determined from the distribution of reco v ered values. 
The difference is likely due to the perturbative nature of the derivation of the 
expectation. Green and orange lines and symbols show that we recover the 
similar distributions from both Hartlap-corrected Gaussian and t-distribution 
posteriors calculated with an independence Jeffreys prior as advocated in 
Sellentin & Heavens ( 2016 ). This can easily be understood as the posteriors 
have the same variance. The blue dashed lines and triangles show the result of 
using a t -distribution posterior with m match , corresponding to equation (51). 
As can be seen, this prior is able to match the variance reco v ered by integrating 
under the posterior averaged over our realizations, with the scatter recovered 
from MAP estimates. 
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onte Carlo results for different values of S , and the distribution
f MAP parameters. Results are shown in Fig. 2 , which shows that,
s expected, we can choose a prior to match the model parameter
o variance reco v ered from the posterior to that calculated in a
requentist style approach where we look at the spread of reco v ered

AP estimates. Given that this derivation best matched the set-up of
he Monte Carlo simulations, using m match provides an excellent fit
o the numerical results. 

 TESTING  AG AINST  A  N O N L I N E A R  M O D E L  

o test the performance of the different posterior distributions
iscussed in Sections 2 and 4 in a realistic cosmological setting
e adopt a mock experiment as also considered by Friedrich &
ifler ( 2018 ). They simulated a tomographic cosmic shear data vector

ncluding auto- and cross-correlations of ξ± in five source redshift
ins on a surv e y area of 5000 deg 2 (hence mimicking 5-yr data
f the Dark Energy Surv e y, cf. their table 1 for details). Overall
his data vector contains 450 data points. Around a true data vector
omputed at a cosmology with ( 
m , σ 8 , w 0 ) = (0.3156, 0.831, −1)
e draw 1000 Gaussian random realizations assuming a theoretical

ov ariance matrix deri ved using the halo model to describe non-linear
lustering. Here 
m is the present-day cosmological matter density,
8 is the rms density fluctuations in spheres of radius 8 h −1 Mpc,
nd w 0 is the Dark Energy equation-of-state parameter. Both the
ovariance calculation and subsequent analyses of the mock data
ectors are carried out with the CosmoLike toolkit (Krause & Eifler
017 ). 
In Fig. 3 we show marginalized posterior constraints in the 
m –

8 plane obtained from the first three of our random realizations
sing different posteriors. The grey shaded contours were obtained
sing the true analytic covariance that was also used to draw our
ock data vectors. The orange contours assume that there is a

ovariance estimate from 650 simulations (i.e. 200 more than data
oints) and that this estimate is used in the posterior of Sellentin &
eavens ( 2016 ) to obtain the constraints (we draw a new covariance

stimate for each data vector from a Wishart distribution). Note that
ll contours within each individual panel of Fig. 3 are derived from
he same data vector realizations. Despite that, there is a noticeable
dditional scatter between the two sets of contours - this is exactly the
ffect of additional scatter of MAP estimates due to noisy covariance
stimates described by Dodelson & Schneider ( 2013 ). The blue
ontours are the modified version of the posterior with a m match prior
hosen to match this additional scatter. 

To assess the performance of our matched prior more quantita-
ively we run our Markov Chain Monte Carlo routine to explore
he posteriors around all 1000 random realizations of our data
ector. Fig. 4 compares how often the true cosmology underlying
ur numerical experiment is located inside the 68 per cent (left-
and panel) and 95 per cent (right-hand panel) confidence regions
f the full three-dimensional parameter space when using different
ovariance matrices and different posterior distributions. Here we
re considering the credible intervals derived from our Bayesian
nalysis work as frequentist confidence intervals. The grey band
n each panel assumes that the true covariance is known. The
reen crosses represent the commonly used approach of a Gaussian
ikelihood with Hartlap corrected precision matrix as estimated from
ifferent numbers of simulations ( x -axis in both panels). The orange
ots use the independence Jeffreys prior advocated by Sellentin &
eavens ( 2016 ) and the resulting t -distribution instead of the Hartlap-

orrected Gaussian likelihood. The blue triangles show the co v erage
chieved with a matched prior that uses equation (51) to compute
NRAS 510, 3207–3221 (2022) 
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Figure 3. Contours containing 68 per cent and 95 per cent probability, 
marginalizing under the posterior in the 
m –σ 8 plane, obtained from 

realizations of DES-like weak lensing data vectors. Each panel is for a 
different random set of data x 0 and co variance S dra wn from Gaussian and 
Wishart distributions respecti vely. The rele v ant parameters of this run for the 
posterior are n s = 650, n d = 450, and n θ = 4. Contours are shown calculated 
using the true covariance matrix with a Gaussian posterior (grey shading), 
and two versions of the t-distribution posterior, one with m = n s as derived 
using an independence Jeffreys prior for the true covariance as in Sellentin & 

Heavens ( 2016 ) (orange), and one using a covariance-matching prior derived 
for linear models (blue). The dashed lines mark the expected values of both 
parameters. 
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he exponent m . This likelihood indeed manages to achieve coverage 
actions of approximately 68 per cent and 95 per cent respectively. 
he red squares show the co v erage obtained from simply re-scaling

he Gaussian log-likelihood in the manner advocated by Perci v al et al.
 2014 ), which is also close to 68 per cent and 95 per cent respectively.
he dash–dotted line shows the co v erage that is expected for the
tandard Gaussian likelihood based on the calculations of Dodelson 
 Schneider ( 2013 ). 
 SUMMARY  

ur suggested way forward is quite simple - in situations where the
ovariance matrix S for Gaussian data is itself a random variable
rawn from a Wishart distribution with n s − 1 degrees of freedom,
or example when it is constructed from n s mock samples, then we
ropose a frequentist matching prior that is uniform in μ and depends
n � as | �| −( m −n s + n d + 1) / 2 , leading to a posterior 

 ( μ| x 0 , S) ∝ 

[
1 + 

χ2 

( n s − 1) 

]− m 
2 

, (52) 

here 

2 = ( x 0 − μ) T S −1 ( x 0 − μ) . (53) 

he power-law index m is given by equation (51), and repeated here
or completeness 

 = n θ + 2 + 

n s − 1 + B( n d − n θ ) 

1 + B( n d − n θ ) 
, (54) 

 = 

( n s − n d − 2) 

( n s − n d − 1)( n s − n d − 4) 
, (55) 

here n d is the number of data points and n θ the number of
arameters. This will lead to credible intervals that can also be
nterpreted as confidence intervals with approximately the same 
o v erage probability. Note that this expression does not require any
xtra factors of h , or other terms – i.e. S is the approximate covariance
atrix, and S −1 its inverse. This enables a Bayesian analysis, with
 matching prior designed with this frequency-matching property. 
n general, this procedure increases the model parameter credible 
ntervals compared with those derived from the more usual indepen- 
ence Jeffreys prior on the true data covariance, and therefore can be
onsidered a more conserv ati ve choice for making deductions from
ata. 
If the reader prefers to approximate the posterior using a Gaussian

istribution, then rather than inverting S or hS , the matrix ( S 
′ 
) −1 to

e used when calculating χ2 should be the inverse of 

 

′ = 

( n s − 1)[1 + B( n d − n θ )] 

n s − n d + n θ − 1 
S, (56) 

hich matches the method proposed in Perci v al et al. ( 2014 ),
eplacing one of the approximations used there with an exact 
 xpression. To deriv e this, consider the factor by which we must
ultiply equation (31) to obtain equation (50) – matching the model 

arameter co variance e xpected from inte grating under the posterior
ith that from the distribution of MAP solutions. 
Both the Gaussian approximation and our preferred t-distribution 

olution give model parameter covariances that are very similar to 
he suggestion of Friedrich & Eifler ( 2018 ) when n θ is small. They
roposed multiplying the Sellentin & Heavens ( 2016 ) posterior by
he Dodelson & Schneider ( 2013 ) factor of 1 + B ( n d − n θ ). To see
he empirical similarity, note that the Sellentin & Heavens ( 2016 )
osterior gives a covariance for the distribution of μ around x 0 of 
S , and compare equation (56) to hS × [1 + B ( n d − n θ )]. 

 C O N C L U S I O N S  

he primary result in our paper is presented in Section 7, which
rovides a frequentist-matching prior: i.e. the exponent in a power- 
aw prior on the determinant of the true data covariance matrix
equired to yield a posterior model parameter covariance matching 
he distribution of true parameter values with respect to maximum 

ikelihood estimates (and vice-versa for the linear models we 
MNRAS 510, 3207–3221 (2022) 
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Figure 4. Comparing how often the true cosmology underlying our numerical experiment of Section 6 is found inside the 68 per cent (left panel) and 95 per cent 
(right panel) credible regions when using different covariance matrices and different posterior distributions. Note that we are comparing how well a credible 
region works as a confidence interval, and hence this test is not fair. The grey band in each panel assumes that the true covariance is known, in which case, with 
the problem being considered the credible interval also works as a confidence interval. The width of the band indicates the expected credible interval containing a 
co v erage probability of 68 per cent from 1000 realizations, assuming a binomial distribution for the number of successes. Hence the horizontal black dashed line, 
which indicated the expected value does not have to lie in the middle of this band. The green crosses represent the common approach of a Gaussian likelihood 
with Hartlap corrected precision matrix for different numbers of simulations used to estimate the covariance matrix ( x -axis in both panels). The vertical dotted 
line marks n s = n d . The orange dots use the independence Jeffreys prior advocated by Sellentin & Heavens ( 2016 ) and the resulting t-distribution instead of 
the Hartlap corrected Gaussian likelihood. The blue triangles show the co v erage achiev ed with a matched prior that uses equation (51) to compute the exponent 
m , and the red squares show the co v erage obtained from simply rescaling the Gaussian log-likelihood in the manner advocated by Perci v al et al. ( 2014 ), as in 
equation (56). The dash-dotted line show the co v erage that is expected for the t-distribution posterior calculated using the independence Jeffreys prior. 
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onsider). Our analysis lies at the interface between Bayesian and
requentist analyses: allowing an analysis that results in multiple
nterpretations of the same parameter intervals with the same prob-
bility. In order to derive this, we have assumed a linearized model,
 ut ha ve demonstrated broader applicability using a realistic non-
inear model fit. Note that, in general, our results will not be valid
or arbitrary non-linear models or reparametrizations. The use of this
ormalism for parameter inference when the covariance matrix is
tself approximate offers a way to satisfy scientists whose intuition
s based on frequentist style measures and those who wish for the
nalysis to be Bayesian in construct (which is often simpler for
ractical application). 
We initially considered an independence Jeffreys prior on the true

ovariance matrix, as advocated in Sellentin & Heavens ( 2016 ). We
howed that this leads to a posterior with covariance around the
odel parameters that matches that assuming a Gaussian posterior

fter scaling the data covariance matrix by the Hartlap factor. The
erived model parameter covariance does not match that from the
istribution of MAP estimates found by Dodelson & Schneider
 2013 ), which is understandable given that they are calculating
ifferent distributions. We have considered alternative priors that
re powers of the determinant of the true covariance matrix and
hich yield posteriors with frequentist co v erage, at least at the level
f covariance of the distributions. Using this allows the interpretation
f credible intervals as confidence intervals with approximately the
ame probability. Because of the choice of a power-law prior, the
osteriors of interest have the form of a multi v ariate t-distribution.
or this form, the distribution of the posterior around the MAP
NRAS 510, 3207–3221 (2022) 
stimate depends on the specific data realization - this can clearly
e seen in equation (38). In comparison, for a Gaussian posterior,
he distribution around the MAP estimates is independent of the data
nd depends only on the data covariance matrix S . This complicates
he matching. We therefore consider the reco v ered model parameter
o variance av eraged o v er a set of data: here the distribution of
hat data matters. Formally, we calculate the frequentist co v erage
robability for a set of credible intervals, with a view to matching
his probability to that from the distribution of MAP solutions. 

Although we have a t-distribution posterior, the distribution of data
s Gaussian, and so we cannot directly use either the t-distribution
isher matrix (this led to e xpected co variance on model parameters
s in equation (32)), or integrate under the posterior assuming
he data is distributed according to a multi v ariate t-distribution
leading to equation (42)). Instead, we have to consider the Gaussian
istribution of data when determining the average model parameter
ovariance that would be recovered from the posterior after repeated
rials (giving equation (47)). We also note that this dependence
n the data complicates data compression: the credible intervals
eco v ered from compressed data do not necessarily match those
eco v ered from the full data even for linear models where the
ompression is optimally performed to give the same MAP estimates
see Appendix C). 

The prior that we advocate depends on the properties of the data
nd the problem, particularly n s , n d , and n θ . Having priors that depend
n the expected form of the posterior is quite common (although they
hould obviously not depend on the actual data observed), especially
n the objective Bayesian approach (see Heavens & Sellentin 2018 for
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n application to cosmology), so we do not see this as a fundamental
roblem, although it does conflict with the Bayesian notion of the 
rior as an expression of the state of knowledge before the experiment
s performed. 

One might also worry that our matching criterion is, in a sense,
inking the posterior and properties of the data that depend on 
he likelihood. But the posterior should answer the question of 
hat is the truth given the data, while the likelihood considers the
ata given the truth. These are fundamentally different things, and 
o why are we matching posterior and likelihood widths? If we 
ompare the covariance inherent in the likelihood and the posterior 
or multi v ariate Gaussian distributions, then we might consider an 
pproximate link where σ 2 

post = σ 2 
like + σ 2 

prior . This would be exact if
ll distributions were Gaussian, or we were working in the Gaussian 
imit. In this limit, the standard prior on the covariance used in
he posterior directly adds to the covariance we assume for our 
xperimental result. Translating through to model parameters, both 
ontrib utions still contrib ute. So we see that the prior choice is
elated to the credible interval quoted for experimental measurements 
nd forms the link between posterior and likelihood. A prior is
hosen such that it does not change this covariance, and so in this
ense our matching prior is an uninformative prior for the model 
arameters. 
Using the multi v ariate t-distribution posterior makes the analysis 

ttractive in a Bayesian sense, as it matches the problem with fewer
pproximations. In general, approximating the posterior as Gaussian 
as a relatively small effect on the posterior surface for 1 σ and 2 σ
ntervals, and in the examples we have considered less so than the
hoice of prior (see Appendix D). Even so, we recommend using the
ulti v ariate t-distribution with the revised prior as this represents a

onsistent Bayesian approach. Moreo v er, the tail probabilities can be 
uch greater than those of the equi v alent Gaussian, which can be in

rror when tensions between data sets are considered. In this case, we
eed to be careful about the interpretation of N σ confidence intervals, 
s discussed in Appendix D. For those that cannot contemplate a 
osterior with a form other than Gaussian, we have included the 
lternative correction to use instead of the Hartlap factor for an 
pproximate Gaussian posterior in Section 7. 

When n θ = n d , equation (51) gives that m = n s + n d + 1, and
he prior reduces to | �| −( n d + 1) . For this prior, the covariance of the
osterior distribution as given in equation (22) reduces to S . From
he properties of the Wishart distribution, this has expected value � 

atching the covariance of the frequentist distribution from which 
he data were assumed to be drawn. Note that no factor of h is required
n the posterior, or in the Gaussian approximation to get this result. To
nderstand why not, note that the rationale often used to justify using
 Gaussian posterior based on a covariance hS (i.e. including a factor
 ) is that the inverse matrix S −1 is a biased estimate of � 

−1 , and this
s corrected by using hS rather than S . Thus the argument goes that
e should use hS in the posterior. Ho we ver, we should consider that

he model parameter covariance derived from the posterior is biased 
n the opposite way requiring an extra factor h −1 following the same
ationale. To see this, consider equation (30), which shows that the 
odel parameter covariance from a set of repeated trials each with a

ifferent S (with no h factor) is Wishart distributed with expectation 
iven by a function of �. Where n θ = n d , and we fit for the values of
, the deriv ed co variance reduces to S with expectation �, matching

hat we would e xpect giv en the Gaussian distribution of the data.
ncluding h would have biased our errors compared to this expected 
alue. Thus, explicitly including the Hartlap factor in a posterior to 
orrect for a bias in S −1 is not just wrong from a Bayesian standpoint,
ut the standard rationale for its application misses a crucial step. 
ur proposed posterior consistently corrects for any potential biases 
ue to having skewed distributions without any need for extra ad hoc
actors. 

Finally, we note that we form a matching prior based on the
eco v ered model parameter covariance and not the distribution, as
s more standard in statistical analyses. We do this because the
ovariance of the posterior distribution for model parameters offers 
 simple way to match the ‘width’ of two distributions, and that we
an determine simple results for a power-law prior where we only
ave one degree of freedom and so only one degree of matching is
ossible. An extension to this work would be to consider varying
he form of the prior beyond a simple power-law of the determinant
f the true data covariance matrix to better match the shape of the
osterior, in line with the more standard matching criterion used in
tatistics. We could also have directly compared credible intervals 
nd confidence intervals - i.e. av eraged o v er σ rather than the model
arameter covariance where necessary, but we do not expect that this
ould change our results significantly compared with our chosen 
atching criterion based on covariance. 
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PPENDIX  A :  MULTIVARIATE  

ISTRIBU TIONS  

ome multi v ariate distributions with data dimension n d are listed
ere for reference: 
The Wishart distribution 

 W 

( S | R, ν) = 

| S | ν−n d −1 
2 exp 

[− 1 
2 T r( R 

−1 S ) 
]

2 
νn d 

2 | R| ν2  n d 

(
ν
2 

) , (A1) 

here ν is the degrees of freedom, and R the scale matrix. The mean
s E [ S ] = νR , and the variance is Var[ S ij ] = ν[ R 

2 
ij − R ii R jj ]. 

The inverse Wishart distribution 

 W 

−1 ( R| S , ν) = 

| S | ν2 | R| − ν+ n d + 1 
2 exp 

[− 1 
2 T r( R 

−1 S ) 
]

2 
νn d 

2  n d 

(
ν
2 

) , (A2) 

here ν is the degrees of freedom, and S the scale matrix. The mean
s E [ R ] = S /( ν − n d − 1). 

The multi v ariate Normal or Gaussian distribution written in a
orm using the Trace operator 

 N ( x 0 | μ, R) = (2 π ) −
n d 
2 | R| − 1 

2 

exp 

[
−1 

2 
T r 

(
R 

−1 ( x 0 − μ)( x 0 − μ) T 
)]

, (A3) 

ith mean E[ x 0 ] = μ and variance Var[ x 0 ] = R. 
The multi v ariate t -distribution 

 t,ν( x 0 | μ, R) = 

[( ν + n d ) / 2] 

 ( ν/ 2)( νπ ) n d / 2 | R | 1 / 2 

× [
1 + ( x 0 − μ) T ( νR) −1 ( x 0 − μ) 

]− ν+ n d 
2 , (A4) 

here ν is the degrees of freedom, and R the scale matrix. The mean
s E[ x 0 ] = μ, and the variance is Var[ x 0 ] = 

ν
ν−2 R. 
NRAS 510, 3207–3221 (2022) 
PPENDI X  B:  PERTURBATI VE  BA SED  

PPROACH  F O R  EXPRESSI ONS  I N VO LV I N G  

H E  C OVA R I A N C E  O F  

I SHART-DI STRI BU TED  MATRI CES  

n this appendix, we consider the perturbation based approach to
nderstanding the biases involved in a statistical analysis of data
hen the covariance matrix itself is a random variable S . To do this,
e use the expressions between estimated and true covariance matrix

s provided by Taylor, Joachimi & Kitching ( 2013 ). Let ( hS) −1 =
 

−1 + � � −1 . As S is drawn from a Wishart distribution, the errors
 � −1 can be written 

 ( � � −1 ) ab ( � � −1 ) cd 〉 S = A� 

−1 
ab � 

−1 
cd + B 

(
� 

−1 
ac � 

−1 
bd + � 

−1 
ad � 

−1 
bc 

)
, 

(B1) 

here 

A = 

2 

( n s − n d − 1)( n s − n d − 4) 
, 

 = 

( n s − n d − 2) 

( n s − n d − 1)( n s − n d − 4) 
. (B2) 

First, we consider a perturbative expansion of F 

−1 
S = h 

−1 ( F � +
 F ) −1 , with � F defined as a standard Gaussian Fisher matrix with

nv erse co variance � � −1 as required in Section 3.1. Expanding this,
nd taking the expected value, the first-order terms in � F tend to
ero (as ( hS ) −1 is an unbiased estimator of � 

−1 ), and so we are only
nterested in the second-order term in � F , which can be written 

〈 ( F � + � F ) 
−1 〉 S 

∣∣
s.o. 

= F 

−1 
� � F F 

−1 
� � F F 

−1 
� . (B3) 

utting the relationships given in equation (B1) into equation (B3),
e find that 

F 

−1 
S 

〉
S 

� h 

−1 [ 1 + A + B( n θ + 1) ] F 

−1 
� . (B4) 

he calculation of the inverse Fisher matrix averaged over S using
his perturbation based approach was performed in Perci v al et al.
 2014 ) for the Gaussian Fisher matrix. As shown in the deri v ation
eading to equation (32), this expression does not have to be solved
erturbatively as an exact solution is possible. The non-perturbative
olution is given in equation (31). 

The ne xt e xpression that we wish to understand perturbatively
s 〈 F 

−1 
S T r[ S −1 �] 〉 S , as required in Section 3.2.2 and given in

quation (45). The expression for which we are taking the expectation
an be written 

F 

−1 
S T r[ S −1 �] 

)
αβ

= 

[
F 

−1 
S 

]
αβ

S −1 
ab � ab . (B5) 

he second-order term from F 

−1 
S is given by equation (B4), leading

 term n d [1 + A + B ( n θ + 1)], with the factor n d h coming from the
ummation o v er the term S −1 

ab � ab . There is also a second-order cross
erm from F 

−1 
S and S −1 

ab , which gives −[ n d A + 2 B ]. Adding these
ogether, we find the result in equation (45). 

To approximate the expression in equation (46), note that there are
ight possible ways that we can have pairs of � � −1 in 

F 

−1 
S 

]
αβ

d μa 

d θα′ 
S −1 

ab � bc S 
−1 
cd 

d μd 

d θβ ′ 

[
F 

−1 
S 

]
β ′ α′ , (B6) 

ith one at second order from each F 

−1 
S , the cross pair between the

wo F 

−1 
S and the cross pair from the two S −1 , and four cross pairs

etween F 

−1 
S and S −1 . Treating each in turn and expanding using

quation (B1) leads to the result in equation (46). 
Finally, we note that the expression in equation (50) can be derived

imilarly. To see this, note that there are eight possible ways that we
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Figure D1. The ratio of tail probabilities for t-distribution and Gaussian 
posteriors outside of ±N σ credible intervals, where N = 1... 5. 
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an have pairs of � � −1 in 

 ̂

 θα
ˆ θβ〉 x,S = 

[
F 

−1 
S 

]
αα′ 

d μa 

d θα′ 
S −1 

ab � bc S 
−1 
cd 

d μd 

d θβ ′ 

[
F 

−1 
S 

]
β ′ β, (B7) 

imilar to the expansion of equation (B6). These expressions are 
ifferent - for example in the limit as hS → �, equation (B6) tends
owards n θ ( F 

−1 
� ) αβ , while equation (B7) tends towards ( F 

−1 
� ) αβ .

reating each of the eight possible combinations of two � � −1 

eparately, expanding using equation (B1) and summing the terms 
ives the result in equation (50), which was the primary result of
odelson & Schneider ( 2013 ). 

PPENDIX  C :  COMPRESSING  T H E  DATA  

he effect of a linear compression of the data on model parameter
nference can be considered using a property of the multi v ariate
 -distribution. For some n c × n d matrix M , assuming that 

 ( μ| x 0 , S) = f t,m −n d 

(
μ

∣∣∣∣x 0 , n s − 1 

m − n d 
S 

)
, (C1) 

hen a property of the multi v ariate t-distribution is that 

 ( M μ| M x 0 , S) = f t,m −n d 

(
M μ

∣∣∣∣M x 0 , 
n s − 1 

m − n d 
M SM 

T 

)
. (C2) 

ow consider an analysis of the compressed data, where we apply a
ompression with n c = n θ and 

 = F 

−1 
S 

d μ

d θ

T 

S −1 , (C3) 

uch that the MAP estimate ˆ θ = M x 0 , and 

 SM 

T = F 

−1 
S 

d μ

d θ

T 

S −1 SS −1 d μ

d θ
F 

−1 
S = F 

−1 
S . (C4) 

or data analysed with a Gaussian posterior and linear model, such 
 compression is sufficient in that the analysis of the reduced data
ives the same inferences as those from the full data set, including
he covariance on μ. Assuming a t-distribution posterior for x 0 , we 
nd that the posterior for the reduced data is 

 ( M μ| M x 0 , S) = f t,m −n d 

(
M μ

∣∣∣∣M x 0 , 
n s − 1 

m − n d 
M SM 

T 

)
. (C5) 

ow, defining θ ′ = M μ, as an estimator for the MAP values, we see
hat 

 ( θ ′ | ̂ θ , S) = f t,m −n d 

(
θ ′ 
∣∣∣∣ ˆ θ , 

n s − 1 

m − n d 
F 

−1 
S 

)
. (C6) 

his gives that the covariance for θ ′ is 

 ( θ ′ − ˆ θ )( θ ′ − ˆ θ ) T 〉 = 

n s − 1 

m − n d − 2 
F 

−1 
S . (C7) 

his is the covariance recovered from the compressed data as given 
y equation (C3), for a measurement of the MAP estimates ˆ θ . This
oes not match the expression in equation (38), but does match the
olution of equation (41) where we integrate under the posterior 
nd then average over x 0 , assuming that this was drawn from a
ulti v ariate t-distribution. 
Our interpretation of this is that the linear compression of the data

nalysed with a t -distribution posterior does not include information 
bout the distribution of the data around the MAP estimate, as is used
n equation (38) to determine a specific model parameter covariance 
or that realization of the data. Without this extra information, 
ompressing the data means that the model parameter covariance 
eco v ered corresponds to the average for a distribution of x 0 ,
ather than that for a particular x 0 reco v ered if using more data.
urthermore, the model parameter covariance corresponds to that 
eco v ered on av erage for data distributed according to a multi v ariate
-distribution. We therefore conclude that data compression works 
ifferently than when analysing using a Gaussian posterior for which 
inear compression is sufficient in terms of giving the same MAP
stimate and co variance. F or multi v ariate t-distribution posteriors,
his is not the case, and additional information is used on the
istribution of the data around the MAP estimate in order to
etermine the model parameter covariance as shown in equation (38). 
his will be considered further in future work. 

PPENDI X  D :  I NTERPRETATI ON  O F  

REDI BLE  I NTERVA LS  BA SED  O N  σ

e now consider how the use of a multivariate t-distribution affects
he interpretation of confidence intervals. Where credible intervals 
re derived directly from the posterior, for example, by considering 
he fraction of points within a given interval for an MCMC chain
xploring a posterior volume, then the interpretation of results is 
orrect whatever the form of the posterior. However, if one wants to
efine or interpret intervals based on ±N σ contours, then one needs
o be careful when interpreting a posterior with t-distribution form, 
s explored in this Appendix. 

As our fa v oured solution assumes a power-law prior, the posterior,
hen written in terms of the model parameters for linear models,
as a multi v ariate t-distribution form with degrees of freedom ν

 m − n θ . When marginalized o v er other parameters, the posterior
robability for each model parameter has a form matching the student
-distribution for the parameter 

√ 

( ν − 2) /νθ i /σ . In general, the t- 
istribution has broader tails and a narrower core than the Gaussian
istribution, matching the Gaussian distribution in the limit ν → ∞ . 
he variance of the standard t-distribution is ν/( ν − 2), and so we
eed a broader range of integration to determine a ±N σ interval,
nte grating o v er ±N 

√ 

ν/ ( ν − 2) rather than ±N as with a Gaussian
or distribution with unit variance. The probabilities associated with 
redible intervals based on ±N σ are compared in Fig. D1 : the ±1 σ
redible interval is more probable for the t -distribution compared 
ith the Gaussian distribution with the same v ariance. Ho we ver, the

ail probabilities are larger for the t -distribution than the Gaussian to
xed ±N σ limits for N ≥ 2. Fig. D2 instead shows the change in N
MNRAS 510, 3207–3221 (2022) 
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Figure D2. The difference between the linear factors required to define cred- 
ible intervals containing a fixed probability for t-distribution and Gaussian 
posteriors. Intervals are defined using the Gaussian probability within the 
±N σ interval, where N = 1... 5. So, for example, tracing the 5 σ curve (solid 
black line), we see that for ν = 100, to match the Gaussian ±5 σ co v erage 
probability, we would need to consider a ±5.29 σ interval for the t -distribution. 
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equired to match tail probabilities from the t-distribution to those
rom the Gaussian distribution. For example, with a t-distribution
osterior with ν = 100, one would need to define an interval based
n the ±5.29 σ threshold to match the inference (including tail
robabilities) made from a 5 σ result with a Gaussian posterior.
e would therefore need to integrate to larger intervals for the t-

istribution to reduce the tail probabilities to match the Gaussian
alues for N ≥ 2. For smaller ν we need to integrate to larger intervals
n σ . 

PPENDIX  E:  A NA LY T I C  MARGINALIZAT I ON  

O R  ESTIMATING  T H E  M E A N  O F  DATA  

n this appendix we outline the deri v ations that allow us to sig-
ificantly speed up our Monte Carlo simulations fitting a single
ean value μ̄ to n d correlated data values x 0 , and ultimately would
ake them superfluous as we could perform all of the necessary

alculations analytically. These are a special case of the deri v ation
iven in Section 3.2.2 and are therefore not strictly necessary, but
e include it as we feel that it gives insight into the problem being

olved. To help with this, we first consider the more familiar case of
 Gaussian posterior. 

1 Fitting the mean with a multi v ariate Gaussian posterior 

e start with the simple case of a Gaussian posterior. For this, we
an use the standard definition of χ2 = −2ln L for fitting a mean μ̄
o data x 0 with inverse covariance matrix ( hS ) −1 

2 ≡
∑ 

ij 

(( x 0 ) i − μ̄)( hS) −1 
ij (( x 0 ) j − μ̄) . (E1) 

xpanding, we can write 

2 = h 

−1 [ C 1 − 2 C 2 ̄μ + C 3 ̄μ
2 ] , (E2) 

here 

 1 = 

∑ 

ij 

( x 0 ) i S 
−1 
ij ( x 0 ) j , (E3) 

 2 = 

∑ 

ij 

S −1 
ij ( x 0 ) j , (E4) 
NRAS 510, 3207–3221 (2022) 
 3 = 

∑ 

ij 

S −1 
ij . (E5) 

o align with the notation used elsewhere in this paper, we note that
or this problem, the parameter θ = μ̄, the model is μi = μ̄, and we
ave d μi / d θ = 1, F S = C 3 and F 

−1 
S = 1 /C 3 . The deri v ati ve d μ/ d θ =

, where the unit vector U is a vector of 1’s, and C 2 = U 

T S −1 x 0 .
e now ‘complete the square’ for the model-dependent part of χ2 

− 2 C 2 ̄μ + C 3 ̄μ
2 = C 3 

(
μ̄ − C 2 

C 3 

)2 

− C 

2 
2 

C 3 
. (E6) 

e can then write the posterior as a Gaussian distribution around the
AP estimate 

 ( ̄μ| x 0 , S) ∝ exp 

[ 

−C 3 

2 h 

(
μ̄ − C 2 

C 3 

)2 
] 

. (E7) 

he mean, as derived from the posterior therefore has a Gaussian
istribution, and the expected value for μ̄ and the variance can then be
ead off, 〈 ̄μ〉 x = C 2 /C 3 , and σ 2 = h / C 3 . As expected for a Gaussian
osterior and a linear model, the MAP estimate matches the value
iven in equation (48), and the expected model parameter variance
ntegrating under the posterior matches the inverse of the Fisher
atrix. So we see that a Gaussian fit to the peak of the posterior also

escribes the results from the full distribution. 

2 Fitting the mean with multi v ariate t -distribution posterior 

his section replicates Section 3.2.2, but now for the special case of
tting the mean to a set of data, as considered in Section 5. We do

his as we used these equations to speed-up the Monte Carlo runs
resented in Section 5, and in order to allow them to be used as an aide
o understanding the deri v ation in Section 3.2.2. Consequently, we
ry to keep the layout and structure similar and make no apologies for
eplication. We only present the deri v ation for Gaussian distributed
ata. 
Assuming that the posterior has a scale matrix ( n s − 1)/( m − n d ) S ,

nd degrees of freedom ν = m − n d , as in equation (22) we can write
he posterior where the model is a constant mean value μ̄

 ( ̄μ| x 0 , S) ∝ 

⎡ 

⎣ 1 + 

1 

n s − 1 

∑ 

ij 

( ( x 0 ) i − μ̄) S −1 
ij (( x 0 ) j − μ̄) 

⎤ 

⎦ 

− m 
2 

. 

(E8) 

xpanding as in the Gaussian case, we have 

 ( ̄μ| x 0 , S) ∝ 

[
1 + 

1 

n s − 1 
( C 1 − 2 C 2 ̄μ + C 3 ̄μ

2 ) 

]− m 
2 

, (E9) 

nd completing the square gives 

 ( ̄μ| x 0 , S) ∝ 

[
1 + 

1 

n s − 1 

(
C 1 − C 

2 
2 

C 3 

)

+ 

C 3 

n s − 1 

(
μ̄ − C 2 

C 3 

)2 
] − m 

2 

. (E10) 

e now define 

 = 

√ 

C 3 

(
μ̄ − C 2 

C 3 

)[
1 + 

1 

n s − 1 

(
C 1 − C 

2 
2 

C 3 

)]−1 / 2 

×
(

n s − 1 

m − 1 

)−1 / 2 

, (E11) 
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 ( ̄μ| x 0 , S) ∝ 

[
1 + 

y 2 

m − 1 

]− m 
2 

. (E12) 

e see that y is distributed with a t-distribution with m − 1 degrees
f freedom, such that the mean 〈 y 〉 = 0, and the variance 〈 y 2 〉 = ( m

1)/( m − 3). 
We can write μ̄ in the form μ̄ = ay + b, which has the property

hat 〈 ̄μ〉 = a〈 y〉 + b, and Var( ̄μ) = a 2 Var( y ): 

¯ = 

1 √ 

C 3 

[
1 + 

1 

n s − 1 

(
C 1 − C 

2 
2 

C 3 

)]1 / 2 (
n s − 1 

m − 1 

)1 / 2 

y + 

C 2 

C 3 
. 

(E13) 

rom this, we see that the distribution of μ̄ has mean 〈 ̄μ〉 = C 2 /C 3 ,
s expected given the discussion in Section 3.3. The variance for any
ealization is 

 ( ̄μ − 〈 ̄μ〉 ) 2 〉 = 

n s − 1 

m − 3 

1 

C 3 

[
1 + 

1 

n s − 1 

(
C 1 − C 

2 
2 

C 3 

)]
, (E14) 

hich matches equation (38) for a fit to the mean. Thus, rather than
umerically integrate under the posterior for any realization of x 0 
nd S , we can instead use this expression for the variance reco v ered.
e have confirmed numerically that this result is correct, and that 

he variance depends on the data as given in this equation. Unlike
or the Gaussian distribution, here the reco v ered variance depends 
n the value of x 0 through C 1 and C 2 . These terms do not cancel in
eneral. 
We can now consider the e xpected value, av eraging o v er multiple

ets of data, but using the same covariance matrix approximation 
 to determine the posterior. In this case, C 3 is fixed, and we need
o replace the terms C 1 and C 

2 
2 by the rele v ant expected values.

emembering that x was drawn from a Gaussian distribution with 
ovariance � and zero mean, we have 

 C 1 〉 x = 

∑ 

ij 

[ S −1 �] ij , (E15) 

C 

2 
2 

〉
x 

= 

∑ 

ij 

[ S −1 �S −1 ] ij . (E16) 

his is the expected result for the variance reco v ered for man y
aussian distributed realizations of the data x 0 . equation (E14), 

ogether with the expressions of equations (E15) & E16, allow 

s not to run Monte Carlo simulations for different data for the
ame covariance, as we can accurately predict the result using these 
quations. 
To go one step further when finding analytic expressions for 
he Monte Carlo runs, we now need to find expressions for the
ele v ant terms in equation (E14), now considering the expected 
alues averaging over all possible covariance matrices S . We can
o this using the e xpressions giv en in Section B for the expansion of
 around the true matrix �. These give 

 1 /C 3 〉 S = [1 + A + 2 B] h 

−1 F 

−1 
� , (E17) 

 C 1 /C 3 〉 S = [ n d + 2 B( n d − 1)] F 

−1 
� , (E18) 

C 

2 
2 /C 

2 
3 

〉
S 

= [1 + B( n d − 1)] F 

−1 
� . (E19) 

s expected, this final two equations match equations (45) & 46
ith n θ = 1. For the first expression we write here the perturbative

esult rather than the exact form as used in Section 3.2.1. In terms of
 θ , this is 〈 F 

−1 
S 〉 = h 

−1 [1 + A + B( n θ + 1)] F 

−1 
� . Note that by using

hese expressions we would have removed any need to do the Monte
arlo simulations, as we have analytic expressions for all stages of

he Monte Carlo runs being performed, albeit to second order in the
ovariance matrix approximation. 

We can also consider how, for this case of fitting the mean to
orrelated data, we can derive an analytic expression for the scatter in
eco v ered MAP estimates. To determine this, note from equation (E9)
hat the MAP estimate (obtained by taking the log and setting the
eri v ati ve with respect to μ̄ to zero in the posterior) is C 2 / C 3 . From the
efinition of these quantities, C 2 /C 3 = U 

T S −1 x 0 /C 3 . Remembering
hat x 0 are drawn from a Gaussian distribution with covariance �, 
e see that C 2 / C 3 is also Gaussian distributed with zero mean and
ariance U 

T S −1 �S −1 U/C 

2 
3 = 〈 C 

2 
2 /C 

2 
3 〉 S . Equation (50) then shows

hat this matches the Dodelson & Schneider ( 2013 ) result. 
A reader having reached this stage of the paper firstly needs

ongratulating, but also might well be asking why we need to run
he Monte Carlo simulations presented in Section 5 at all given
hat we have analytically approximated all of the results we will
xtract from those simulations. And they would be correct. Ho we ver,
e keep Fig. 2 as it adds colour and confirms the validity of the

pproximations – using the Fisher matrix to determine confidence 
ntervals from the posterior, and the second-order expansions through 
hich we estimated the impact of S . 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
MNRAS 510, 3207–3221 (2022) 

brary user on 24 M
arch 2022


	1 INTRODUCTION
	2 CHOICE OF PRIOR TO USE IN A MODEL FIT
	3 MODEL PARAMETER COVARIANCES FROM POSTERIORS AND FROM THE PARAMETER DISTRIBUTION
	4 FREQUENTIST MATCHING PRIOR
	5 TESTING WITH A SIMPLE MEAN FITTING MODEL
	6 TESTING AGAINST A NONLINEAR MODEL
	7 SUMMARY
	8 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: MULTIVARIATE DISTRIBUTIONS
	APPENDIX B: PERTURBATIVE BASED APPROACH FOR EXPRESSIONS INVOLVING THE COVARIANCE OF WISHART-DISTRIBUTED MATRICES
	APPENDIX C: COMPRESSING THE DATA
	APPENDIX D: INTERPRETATION OF CREDIBLE INTERVALS BASED ON 
	APPENDIX E: ANALYTIC MARGINALIZATION FOR ESTIMATING THE MEAN OF DATA

