295 research outputs found
An Analysis of Chinese English Learners’ Listening and Reading Comprehension Performance in CET and its Implications
Listening and reading constitute the basis for speaking and writing in SLA. However, for Chinese English learners, there exists much difference in their listening and reading performance. This paper makes an analysis of 6613 undergraduates’ listening and reading scores in CET from Shanxi normal university by using the visual basic computer language. The result shows that students’ listening ability is much poorer than their reading ability. Students’ listening and reading ability are developed in an unbalanced way, this might be because that students can have easy access to reading material to facilitate their reading comprehension. However, for English listening, they lack sufficient input due to the poor acquisition environment. Some suggestions are proposed to improve the students’ listening ability
Probing Interface of Perovskite Oxide Using Surface-specific Terahertz Spectroscopy
The surface/interface species in perovskite oxides play an essential role in
many novel emergent physical phenomena and chemical processes. With low
eigen-energy in the terahertz region, such species at buried interfaces remain
poorly understood due to the lack of feasible experimental techniques. Here, we
show that vibrational resonances and two-dimensional electron gas at the
interface can be characterized using surface-specific nonlinear spectroscopy in
the terahertz range. This technique uses intra-pulse difference frequency
mixing (DFM) process, which is allowed only at surface/interface of a medium
with inversion symmetry. Sub-monolayer sensitivity can be achieved using the
state-of-the-art detection scheme for the terahertz emission from
surface/interface. As a demonstration, Drude-like nonlinear response from the
two-dimensional electron gas emerging at LaAlO3/SrTiO3 or Al2O3/ SrTiO3
interface was successfully observed. Meanwhile, the interfacial vibrational
spectrum of the ferroelectric soft mode of SrTiO3 at 2.8 THz was also obtained
that was polarized by the surface field in the interfacial region. The
corresponding surface/interface potential, which is a key parameter for
SrTiO3-based interface superconductivity and photocatalysis, can now be
determined optically via quantitative analysis on the polarized phonon
spectrum. The interfacial species with resonant frequencies in the THz region
revealed by our method provide more insights into the understanding of physical
properties of complex oxides.Comment: arXiv admin note: substantial text overlap with arXiv:2207.1461
The New Role of CD163 in the Differentiation of Bone Marrow Stromal Cells into Vascular Endothelial-Like Cells
Bone marrow stromal cells (BMSCs) can differentiate into vascular endothelial cells (VECs). It is regarded as an important solution to cure many diseases, such as ischemic diseases and diabetes. However, the mechanisms underlying BMSC differentiation into VECs are not well understood. Recent reports showed that CD163 expression was associated with angiogenesis. In this study, overexpression of CD163 in BMSCs elevated the protein level of the endothelial-associated markers CD31, Flk-1, eNOS, and VE-cadherin, significantly increased the proportion of Alexa Fluor 488-acetylated-LDL-positive VECs, and promoted angiogenesis on Matrigel. Furthermore, we demonstrated that CD163 acted downstream homeobox containing 1 (Hmbox1) and upstream fibroblast growth factor 2 (FGF-2). These data suggested that CD163 was involved in Hmbox1/CD163/FGF-2 signal pathway in BMSC differentiation into vascular endothelial-like cells. We found a new signal pathway and a novel target for further investigating the gene control of BMSC differentiation into a VEC lineage
Generation of Monoclonal Antibodies against Highly Conserved Antigens
Background: Therapeutic antibody development is one of the fastest growing areas of the pharmaceutical industry. Generating high-quality monoclonal antibodies against a given therapeutic target is very crucial for the success of the drug development. However, due to immune tolerance, some proteins that are highly conserved between mice and humans are not very immunogenic in mice, making it difficult to generate antibodies using a conventional approach. Methodology/Principal Findings: In this report, the impaired immune tolerance of NZB/W mice was exploited to generate monoclonal antibodies against highly conserved or self-antigens. Using two highly conserved human antigens (MIF and HMGB1) and one mouse self-antigen (TNF-alpha) as examples, we demonstrate here that multiple clones of high affinity, highly specific antibodies with desired biological activities can be generated, using the NZB/W mouse as the immunization host and a T cell-specific tag fused to a recombinant antigen to stimulate the immune system. Conclusions/Significance: We developed an efficient and universal method for generating surrogate or therapeuti
Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis
Bax and Bak play a redundant but essential role in apoptosis initiated by the mitochondrial release of apoptogenic factors. In addition to their presence at the mitochondrial outer membrane, Bax and Bak can also localize to the ER. Agents that initiate ER stress responses can induce conformational changes and oligomerization of Bax on the ER as well as on mitochondria. In wild-type cells, this is associated with caspase 12 cleavage that is abolished in bax−/−bak−/− cells. In bax−/−bak−/− cells, introduction of Bak mutants selectively targeted to either mitochondria or the ER can induce apoptosis. However, ER-targeted, but not mitochondria-targeted, Bak leads to progressive depletion of ER Ca2+ and induces caspase 12 cleavage. In contrast, mitochondria-targeted Bak leads to enhanced caspase 7 and PARP cleavage in comparison with the ER-targeted Bak. These findings demonstrate that in addition to their functions at mitochondria, Bax and Bak also localize to the ER and function to initiate a parallel pathway of caspase activation and apoptosis
Recurrent renal secondary hyperparathyroidism caused by supernumerary mediastinal parathyroid gland and parathyromatosis: A case report
BackgroundSurgical parathyroidectomy (PTX) is necessary for patients with severe and progressive secondary hyperparathyroidism (SHPT) refractory to medical treatment. Recurrence of SHPT after PTX is a serious clinical problem. Both supernumerary mediastinal parathyroid gland and parathyromatosis are the rare causes of recurrent renal SHPT. We report a rare case of recurrent renal SHPT due to supernumerary mediastinal parathyroid gland and parathyromatosis.Case presentationA 53-year-old man underwent total parathyroidectomy with autotransplantation due to the drug-refractory SHPT 17 years ago. In the last 11 months, the patient experienced symptoms including bone pain and skin itch, and the serum intact parathyroid hormone (iPTH) level elevated to 1,587 pg/ml. Ultrasound detected two hypoechoic lesions located at the dorsal area of right lobe of the thyroid gland, and both lesions presented as characteristics of hyperparathyroidism in contrast-enhanced ultrasound. 99mTc-MIBI/SPECT detected a nodule in the mediastinum. A reoperation involved a cervicotomy for excising parathyromatosis lesions and the surrounding tissue and a thoracoscopic surgery for resecting a mediastinal parathyroid gland. According to a histological examination, two lesions behind the right thyroid lobe and one lesion in the central region had been defined as parathyromatosis. A nodule in the mediastinum was consistent with hyperplastic parathyroid. The patient remained well for 10 months with alleviated symptoms and stabilized iPTH levels in the range of 123–201 pg/ml.ConclusionAlthough rare, recurrent SHPT may be caused by a coexistence of both supernumerary parathyroid glands and parathyromatosis, which should receive more attention. The combination of imaging modalities is important for reoperative locations of parathyroid lesions. To successfully treat parathyromatosis, all the lesions and the surrounding tissue must be excised. Thoracoscopic surgery is a reliable and safe approach for the resection of ectopic mediastinal parathyroid glands
Heteroatom-Induced Molecular Asymmetry Tunes Quantum Interference in Charge Transport through Single-Molecule Junctions
We studied the interplay between quantum interference (QI) and molecular asymmetry in charge transport through a single molecule. Eight compounds with five-membered core rings were synthesized, and their single-molecule conductances were characterized using the mechanically controllable break junction technique. It is found that the symmetric molecules are more conductive than their asymmetric isomers and that there is no statistically significant dependence on the aromaticity of the core. In contrast, we find experimental evidence of destructive QI in five-membered rings, which can be tuned by implanting different heteroatoms into the core ring. Our findings are rationalized by the presence of antiresonance features in the transmission curves calculated using nonequilibrium Green’s functions. This novel mechanism for modulating QI effects in charge transport via tuning of molecular asymmetry will lead to promising applications in the design of single-molecule devices
Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction
Two-dimensional van der Waals heterostructures (2D-vdWHs) stacked from atomically thick 2D materials are predicted to be a diverse class of electronic materials with unique electronic properties. These properties can be further tuned by sandwiching monolayers of planar organic molecules between 2D materials to form molecular 2D-vdW heterojunctions (M-2D-vdWHs), in which electricity flows in a cross-plane way from one 2D layer to the other via a single molecular layer. Using a newly developed cross-plane break junction (XPBJ) technique, combined with density functional theory calculations, we show that M-2D-vdWHs can be created, and that cross-plane charge transport can be tuned by incorporating guest molecules. More importantly, the M-2D-vdWHs exhibit distinct cross-plane charge transport signatures, which differ from those of molecules undergoing in-plane charge transport
- …