354,229 research outputs found
Recommended from our members
Assessing the effects of technological progress on energy efficiency in the construction industry: A case of China
Energy-saving technologies in buildings have received great attention from energy efficiency researchers in the construction sector. Traditional research tends to focus on the energy used during building operation and in construction materials production, but it usually neglects the energy consumed in the building construction process. Very few studies have explored the impacts of technological progress on energy efficiency in the construction industry. This paper presents a model of the building construction process based on Cobb-Douglas production function. The model estimates the effects of technological progress on energy efficiency with the objective to examine the role that technological progress plays in energy savings in China's construction industry. The modeling results indicated that technological progress improved energy efficiency by an average of 7.1% per year from 1997 to 2014. Furthermore, three main technological progress factors (the efficiency of machinery and equipment, the proportion change of the energy structure, and research and development investment) were selected to analyze their effects on energy efficiency improvement. These positive effects were verified, and results show the effects of first two factors are significant. Finally, recommendations for promoting energy efficiency in the construction industry are proposed
Recommended from our members
Your Code Is My Code: Exploiting a Common Weakness in OAuth 2.0 Implementations
Many millions of users routinely use their Google, Facebook and Microsoft accounts to log in to websites supporting OAuth 2.0-based single sign on. The security of OAuth 2.0 is therefore of critical importance, and it has been widely examined both in theory and in practice. In this paper we disclose a new class of practical attacks on OAuth 2.0 implementations, which we call Partial Redirection URI Manipulation Attacks. An attack of this type can be used by an attacker to gain a victim user’s OAuth 2.0 code (a token representing a right to access user data) without the user’s knowledge; this code can then be used to impersonate the user to the relevant relying party website. We examined 27 leading OAuth 2.0 identity providers, and found that 19 of them are vulnerable to these attacks
Simplifying the mosaic description of DNA sequences
By using the Jensen-Shannon divergence, genomic DNA can be divided into
compositionally distinct domains through a standard recursive segmentation
procedure. Each domain, while significantly different from its neighbours, may
however share compositional similarity with one or more distant
(non--neighbouring) domains. We thus obtain a coarse--grained description of
the given DNA string in terms of a smaller set of distinct domain labels. This
yields a minimal domain description of a given DNA sequence, significantly
reducing its organizational complexity. This procedure gives a new means of
evaluating genomic complexity as one examines organisms ranging from bacteria
to human. The mosaic organization of DNA sequences could have originated from
the insertion of fragments of one genome (the parasite) inside another (the
host), and we present numerical experiments that are suggestive of this
scenario.Comment: 16 pages, 1 figure, Accepted for publication in Phys. Rev.
Universality of Long-Range Correlations in Expansion-Randomization Systems
We study the stochastic dynamics of sequences evolving by single site
mutations, segmental duplications, deletions, and random insertions. These
processes are relevant for the evolution of genomic DNA. They define a
universality class of non-equilibrium 1D expansion-randomization systems with
generic stationary long-range correlations in a regime of growing sequence
length. We obtain explicitly the two-point correlation function of the sequence
composition and the distribution function of the composition bias in sequences
of finite length. The characteristic exponent of these quantities is
determined by the ratio of two effective rates, which are explicitly calculated
for several specific sequence evolution dynamics of the universality class.
Depending on the value of , we find two different scaling regimes, which
are distinguished by the detectability of the initial composition bias. All
analytic results are accurately verified by numerical simulations. We also
discuss the non-stationary build-up and decay of correlations, as well as more
complex evolutionary scenarios, where the rates of the processes vary in time.
Our findings provide a possible example for the emergence of universality in
molecular biology.Comment: 23 pages, 15 figure
Automatic loop-shaping in quantitative feedback theory using genetic algorithms
Design automation in Quantitative Feedback Theory (QFT) is addressed in
this paper. An automatic loop shaping procedure based on Genetic Algorithms
(GAs) is developed, where a robust controller for uncertain plants can be designed
automatically such that the cost of feedback is minimised and all robust stability
and performance specifcations are satisfed. The developed approach can improve
the current QFT design in at least two aspects. One is in the design of an initial
controller for complicated plants, which might be difficult even to find a stabilising controller manually. The other is in improving the initial manual design by
optimisation of the performance index under the prescribed requirements within
the neighbourhood of the manual design. An illustrative example which compares
manual loop shaping with automatic loop shaping is presented
Rectifying "nanohomo" contacts of W-Ga-C composite pad and nanowire fabricated by focused-ion-beam induced chemical vapour deposition
We prepared W-Ga-C composite contacts on W-Ga-C composite nanowires by focused-ion-beam-induced chemical vapor deposition using a dual-beam scanning electron microscope/focused-ion-beam system. The current-voltage (I-V) characteristics of wires were found to change from nonlinear to linear with increasing wire thickness. For wires with small dimensions, which result in strong nonlinear I-V behavior at room temperature, pairs of contacts were fabricated along the wire under different ion energies and scanning modes. Nonlinear and asymmetric rectifying I-V characteristics were observed. The results suggest that nanoscaled W-Ga-C nanowires may behave similarly to semiconductors and that the contact characteristics may be modified using different deposition conditions. Furthermore, ohmiclike junctions could be formed through the use of specific deposition conditions for the contact pads and nanowires
- …