15,326 research outputs found
Mechanical properties of Li-Sn alloys for Li-ion battery anodes: A first-principles perspective
© 2016 Author(s). Fracture and pulverization induced by large stress during charging and discharging may lead to the loss of electrical contact and capacity fading in Sn anode materials. A good understanding of mechanical properties is necessary for their optimal design under different lithiation states. On the basis of first-principles calculations, we investigate the stress-strain relationships of Li-Sn alloys under tension. The results show that the ideal tensile strengths of Li-Sn alloys vary as a function of Li concentration, and with the increase of Li+ concentration, the lowest tensile strength decreases from 4.51 GPa (Sn) to 1.27 GPa (Li7Sn2). This implies that lithiation weakens the fracture resistance of Li-Sn alloys
Interferometer-Type Structures for Guided Atoms
We experimentally demonstrate interferometer-type guiding structures for
neutral atoms based on dipole potentials created by micro-fabricated optical
systems. As a central element we use an array of atom waveguides being formed
by focusing a red-detuned laser beam with an array of cylindrical microlenses.
Combining two of these arrays, we realize X-shaped beam splitters and more
complex systems like the geometries for Mach-Zehnder and Michelson-type
interferometers for atoms.Comment: 4 pages, 6 figure
A fluorescent polarization-based assay for the identification of disruptors of the RCAN1/calcineurin A protein complex
5 pages, 4 figures, a table. 19891949 [PubMed]Calcineurin is a Ca(2+)/calmodulin-dependent serine/threonine protein phosphatase involved in many biological processes and developmental programs, including immune response. One of the most studied substrates of calcineurin is the transcription factor NFAT (nuclear factor of activated T cells) responsible for T-cell activation. Different anticalcineurin drugs, such as cyclosporine A and FK506, are the most commonly used immunosuppressants in transplantation therapies. Unfortunately, their mechanism of action, completely blocking the calcineurin phosphatase activity while also requiring continuous administration, bears severe side effects. During recent years, the family of regulators of calcineurin (RCAN) has been described and studied extensively as modulators of calcineurin signaling pathways. The RCAN1 region, spanning amino acids 198 to 218 and responsible for inhibiting the calcineurin-NFAT signaling pathway in vivo, has been identified. An RCAN1-derived peptide spanning this sequence interferes with the calcineurin-NFAT interaction without affecting the general calcineurin phosphatase activity. Here we report the development of an optimized in vitro high-throughput fluorescence polarization assay based on the disruption of the RCAN1(198-218)-CnA interaction for identifying molecules with immunosuppressant potential. This approach led us to identify dipyridamole as a disruptor of such interaction. Moreover, three small molecules with a potential immunosuppressive effect were also identifiedThis work was supported by grants from Fundació La Marató de TV3 (Ref. 030830), the Spanish Ministry of Education and Science (SAF2006-04815, BIO2004-00998, BIO2007-60066, CTQ2005-00995/BQU), the Fundación Mutua Madrileña 2007 and from the Generalitat de Catalunya (Ref. 2006 BE 00051)Peer reviewe
Charge-density-wave order parameter of the Falicov-Kimball model in infinite dimensions
In the large-U limit, the Falicov-Kimball model maps onto an effective Ising
model, with an order parameter described by a BCS-like mean-field theory in
infinite dimensions. In the small-U limit, van Dongen and Vollhardt showed that
the order parameter assumes a strange non-BCS-like shape with a sharp reduction
near T approx T_c/2. Here we numerically investigate the crossover between
these two regimes and qualitatively determine the order parameter for a variety
of different values of U. We find the overall behavior of the order parameter
as a function of temperature to be quite anomalous.Comment: (5 pages, 3 figures, typeset with ReVTeX4
Influence of temperature fluctuations on plasma turbulence investigations with Langmuir probes
The reliability of Langmuir probe measurements for plasma-turbulence
investigations is studied on GEMR gyro-fluid simulations and compared with
results from conditionally sampled I-V characteristics as well as self-emitting
probe measurements in the near scrape-off layer of the tokamak ASDEX Upgrade.
In this region, simulation and experiment consistently show coherent in-phase
fluctuations in density, plasma potential and also in electron temperature.
Ion-saturation current measurements turn out to reproduce density fluctuations
quite well. Fluctuations in the floating potential, however, are strongly
influenced by temperature fluctuations and, hence, are strongly distorted
compared to the actual plasma potential. These results suggest that
interpreting floating as plasma-potential fluctuations while disregarding
temperature effects is not justified near the separatrix of hot fusion plasmas.
Here, floating potential measurements lead to corrupted results on the ExB
dynamics of turbulent structures in the context of, e.g., turbulent particle
and momentum transport or instability identification on the basis of
density-potential phase relations
Numerical simulations of current generation and dynamo excitation in a mechanically-forced, turbulent flow
The role of turbulence in current generation and self-excitation of magnetic
fields has been studied in the geometry of a mechanically driven, spherical
dynamo experiment, using a three dimensional numerical computation. A simple
impeller model drives a flow which can generate a growing magnetic field,
depending upon the magnetic Reynolds number, Rm, and the fluid Reynolds number.
When the flow is laminar, the dynamo transition is governed by a simple
threshold in Rm, above which a growing magnetic eigenmode is observed. The
eigenmode is primarily a dipole field tranverse to axis of symmetry of the
flow. In saturation the Lorentz force slows the flow such that the magnetic
eigenmode becomes marginally stable. For turbulent flow, the dynamo eigenmode
is suppressed. The mechanism of suppression is due to a combination of a time
varying large-scale field and the presence of fluctuation driven currents which
effectively enhance the magnetic diffusivity. For higher Rm a dynamo reappears,
however the structure of the magnetic field is often different from the laminar
dynamo; it is dominated by a dipolar magnetic field which is aligned with the
axis of symmetry of the mean-flow, apparently generated by fluctuation-driven
currents. The fluctuation-driven currents have been studied by applying a weak
magnetic field to laminar and turbulent flows. The magnetic fields generated by
the fluctuations are significant: a dipole moment aligned with the symmetry
axis of the mean-flow is generated similar to those observed in the experiment,
and both toroidal and poloidal flux expulsion are observed.Comment: 14 pages, 14 figure
Parallel tempering in full QCD with Wilson fermions
We study the performance of QCD simulations with dynamical Wilson fermions by
combining the Hybrid Monte Carlo algorithm with parallel tempering on
and lattices. In order to compare tempered with standard simulations,
covariance matrices between sub-ensembles have to be formulated and evaluated
using the general properties of autocorrelations of the parallel tempering
algorithm. We find that rendering the hopping parameter dynamical does
not lead to an essential improvement. We point out possible reasons for this
observation and discuss more suitable ways of applying parallel tempering to
QCD.Comment: 16 pages, 3 figure
- …