85 research outputs found

    High Resolution Imaging and the Formation of Stars and Planets

    Get PDF
    Understanding the formation of stellar and planetary systems is one of the great challenges of contemporary astrophysics. This thesis describes progress towards understanding these processes, through advancement of techniques to enable high resolution imaging of faint companions and other structures in the immediate environs of young stars. To ensure optimal performance in an era of large segmented telescopes, techniques to precisely cophase the mirror segments are required. In this thesis we propose the Fizeau Interferometric Cophasing of Segmented Mirrors algorithm, and present the results of testing both numerically and through experiment. We help to rectify a lack of observational evidence with which to test brown dwarf evolutionary models, by laying the foundation for an orbital monitoring survey of 19 brown dwarf binary systems and reporting the discovery of an additional 7 low mass companions to intermediate mass stars. We perform a Non-Redundant Masking (NRM) survey targeting the 1\,Myr old Ophiuchus star forming region. Both binary statistics and the relationship between multiplicity and the presence of a circumstellar disk are explored, providing many results similar to those from older regions. This helps frame the time evolution of effects related to dynamical interactions in binary systems, and the timescale of disk dissipation, with profound implications for giant planet formation. In thesis we also present the results of commissioning for the Gemini Planet Imager Non-Redundant Masking mode. These results indicate that the addition of an Extreme Adaptive Optics systems has substantially improved the performance of NRM compared to previous instruments. Finally, the transition disk T Cha is studied with multi-epoch NRM data, showing that the signal previously interpreted as a planetary companion is more likely to be the result of forward scattering from the inclined outer disk

    Engineered 3D vessel-on-chip using hiPSC-derived endothelial- and vascular smooth muscle cells

    Get PDF
    Crosstalk between endothelial cells (ECs) and pericytes or vascular smooth muscle cells (VSMCs) is essential for the proper functioning of blood vessels. This balance is disrupted in several vascular diseases but there are few experimental models which recapitulate this vascular cell dialogue in humans. Here, we developed a robust multi-cell type 3D vessel-on-chip (VoC) model based entirely on human induced pluripotent stem cells (hiPSCs). Within a fibrin hydrogel microenvironment, the hiPSC-derived vascular cells self-organized to form stable microvascular networks reproducibly, in which the vessels were lumenized and functional, responding as expected to vasoactive stimulation. Vascular organization and intracellular Ca2+ release kinetics in VSMCs could be quantified using automated image analysis based on open-source software CellProfiler and ImageJ on widefield or confocal images, setting the stage for use of the platform to study vascular (patho)physiology and therapy.Cardiolog

    The effects of repetitive use and pathological remodeling on channelrhodopsin function in cardiomyocytes

    Get PDF
    Aim: Channelrhodopsins (ChRs) are a large family of light-gated ion channels with distinct properties, which is of great importance in the selection of a ChR variant for a given application. However, data to guide such selection for cardiac optogenetic applications are lacking. Therefore, we investigated the functioning of different ChR variants in normal and pathological hypertrophic cardiomyocytes subjected to various illumination protocols.Methods and Results: Isolated neonatal rat ventricular cardiomyocytes (NRVMs) were transduced with lentiviral vectors to express one of the following ChR variants: H134R, CatCh, ReaChR, or GtACR1. NRVMs were treated with phenylephrine (PE) to induce pathological hypertrophy (PE group) or left untreated [control (CTL) group]. In these groups, ChR currents displayed unique and significantly different properties for each ChR variant on activation by a single 1-s light pulse (1 mW/mm(2): 470, 565, or 617 nm). The concomitant membrane potential (V-m) responses also showed a ChR variant-specific profile, with GtACR1 causing a slight increase in average V-m during illumination (V-plateau: -38 mV) as compared with a V-plateau > -20 mV for the other ChR variants. On repetitive activation at increasing frequencies (10-ms pulses at 1-10 Hz for 30 s), peak currents, which are important for cardiac pacing, decreased with increasing activation frequencies by 17-78% (p 0.05).Conclusion: Our data show that ChR variants function equally well in cell culture models of healthy and pathologically hypertrophic myocardium but show strong, variant-specific use-dependence. This use-dependent nature of ChR function should be taken into account during the design of cardiac optogenetic studies and the interpretation of the experimental findings thereof.Cardiolog

    Fast optical investigation of cardiac electrophysiology by parallel detection in multiwell plates

    Get PDF
    Current techniques for fast characterization of cardiac electrophysiology employ optical technologies to control and monitor action potential features of single cells or cellular monolayers placed in multiwell plates. High-speed investigation capacities are commonly achieved by serially analyzing well after well employing fully automated fluorescence microscopes. Here, we describe an alternative cost-effective optical approach (MULTIPLE) that exploits high-power LED arrays to globally illuminate a culture plate and an sCMOS sensor for parallel detection of the fluorescence coming from multiple wells. MULTIPLE combines optical detection of action potentials using a red-shifted voltage-sensitive fluorescent dye (di-4-ANBDQPQ) with optical stimulation, employing optogenetic actuators, to ensure excitation of cardiomyocytes at constant rates. MULTIPLE was first characterized in terms of interwell uniformity of the illumination intensity and optical detection performance. Then, it was applied for probing action potential features in HL-1 cells (i.e., mouse atrial myocyte-like cells) stably expressing the blue light-activatable cation channel CheRiff. Under proper stimulation conditions, we were able to accurately measure action potential dynamics across a 24-well plate with variability across the whole plate of the order of 10%. The capability of MULTIPLE to detect action potential changes across a 24-well plate was demonstrated employing the selective K(v)11.1 channel blocker (E-4031), in a dose titration experiment. Finally, action potential recordings were performed in spontaneous beating human induced pluripotent stem cell derived cardiomyocytes following pharmacological manipulation of their beating frequency. We believe that the simplicity of the presented optical scheme represents a valid complement to sophisticated and expensive state-of-the-art optical systems for high-throughput cardiac electrophysiological investigations.Cardiolog

    Light transmittance in human atrial tissue and transthoracic illumination in rats support translatability of optogenetic cardioversion of atrial fibrillation

    Get PDF
    Background: Optogenetics could offer a solution to the current lack of an ambulatory method for the rapid automated cardioversion of atrial fibrillation (AF), but key translational aspects remain to be studied. Objective: To investigate whether optogenetic cardioversion of AF is effective in the aged heart and whether sufficient light penetrates the human atrial wall. Methods: Atria of adult and aged rats were optogenetically modified to express light-gated ion channels (i.e., red-activatable channelrhodopsin), followed by AF induction and atrial illumination to determine the effectivity of optogenetic cardioversion. The irradiance level was determined by light transmittance measurements on human atrial tissue. Results: AF could be effectively terminated in the remodeled atria of aged rats (97%, n = 6). Subsequently, ex vivo experiments using human atrial auricles demonstrated that 565-nm light pulses at an intensity of 25 mW/mm(2) achieved the complete penetration of the atrial wall. Applying such irradiation onto the chest of adult rats resulted in transthoracic atrial illumination as evidenced by the optogenetic cardioversion of AF (90%, n = 4). Conclusion: Transthoracic optogenetic cardioversion of AF is effective in the aged rat heart using irradiation levels compatible with human atrial transmural light penetration.Thoracic Surger

    Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease

    Get PDF
    Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junctions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac diseases that will facilitate industry and academic engagement in high-throughput molecular screening
    • …
    corecore