134 research outputs found

    Are spherulitic lacustrine carbonates an expression of large-scale mineral carbonation? : A case study from the East Kirkton Limestone, Scotland

    Get PDF
    BP Exploration Co. is thanked for funding, and particularly the Carbonate Team for supporting this research and for fruitful discussions. West Lothian Council and Scottish Natural Heritage are thanked for allowing access and permission for sampling the site. The Core Store Team at BGS Keyworth is particularly acknowledged for their assistance. Mark Anderson, Tony Sinclair (University of Hull), and Bouk Lacet (VU University Amsterdam) are thanked for technical support. Anne Kelly (SUERC) for carrying out the Strontium Isotope analyses. Mark Tyrer is thanked for his advice on PHREEQC modelling.Peer reviewedPostprin

    A test of the biogenicity criteria established for microfossils and stromatolites on quaternary tufa and speleothem materials formed in the “Twilight zone” at Caerwys, UK

    Get PDF
    © 2015, Mary Ann Liebert, Inc. The ability to distinguish the features of a chemical sedimentary rock that can only be attributed to biology is a challenge relevant to both geobiology and astrobiology. This study aimed to test criteria for recognizing petrographically the biogenicity of microbially influenced fabrics and fossil microbes in complex Quaternary stalactitic carbonate rocks from Caerwys, UK. We found that the presence of carbonaceous microfossils, fabrics produced by the calcification of microbial filaments, and the asymmetrical development of tufa fabrics due to the more rapid growth of microbially influenced laminations could be recognized as biogenic features. Petrographic evidence also indicates that the development of "speleothem-like" laminae was related to episodes of growth interrupted by intervals of nondeposition and erosion. The lack of any biogenic characteristics in these laminae is consistent with their development as a result of variation in the physicochemical parameters that drive calcite precipitation from meteoric waters in such environmental settings

    Sympatric woodland Myotis bats form tight-knit social groups with exclusive roost home ranges

    Get PDF
    Background: The structuring of wild animal populations can influence population dynamics, disease spread, and information transfer. Social network analysis potentially offers insights into these processes but is rarely, if ever, used to investigate more than one species in a community. We therefore compared the social, temporal and spatial networks of sympatric Myotis bats (M. nattereri (Natterer's bats) and M. daubentonii (Daubenton's bats)), and asked: (1) are there long-lasting social associations within species? (2) do the ranges occupied by roosting social groups overlap within or between species? (3) are M. daubentonii bachelor colonies excluded from roosting in areas used by maternity groups? Results: Using data on 490 ringed M. nattereri and 978 M. daubentonii from 379 colonies, we found that both species formed stable social groups encompassing multiple colonies. M. nattereri formed 11 mixed-sex social groups with few (4.3%) inter-group associations. Approximately half of all M. nattereri were associated with the same individuals when recaptured, with many associations being long-term (>100 days). In contrast, M. daubentonii were sexually segregated; only a quarter of pairs were associated at recapture after a few days, and inter-sex associations were not long-lasting. Social groups of M. nattereri and female M. daubentonii had small roost home ranges (mean 0.2 km2 in each case). Intra-specific overlap was low, but inter-specific overlap was high, suggesting territoriality within but not between species. M. daubentonii bachelor colonies did not appear to be excluded from roosting areas used by females. Conclusions: Our data suggest marked species- and sex-specific patterns of disease and information transmission are likely between bats of the same genus despite sharing a common habitat. The clear partitioning of the woodland amongst social groups, and their apparent reliance on small patches of habitat for roosting, means that localised woodland management may be more important to bat conservation than previously recognised

    Response of a Specialist Bat to the Loss of a Critical Resource

    Get PDF
    Human activities have negatively impacted many species, particularly those with unique traits that restrict their use of resources and conditions to specific habitats. Unfortunately, few studies have been able to isolate the individual and combined effects of different threats on population persistence in a natural setting, since not all organisms can be associated with discrete habitat features occurring over limited spatial scales. We present the results of a field study that examines the short-term effects of roost loss in a specialist bat using a conspicuous, easily modified resource. We mimicked roost loss in the natural habitat and monitored individuals before and after the perturbation to determine patterns of resource use, spatial movements, and group stability. Our study focused on the disc-winged bat Thyroptera tricolor, a species highly morphologically specialized for roosting in the developing furled leaves of members of the order Zingiberales. We found that the number of species used for roosting increased, that home range size increased (before: mean 0.14±SD 0.08 ha; after: 0.73±0.68 ha), and that mean association indices decreased (before: 0.95±0.10; after: 0.77±0.18) once the roosting habitat was removed. These results demonstrate that the removal of roosting resources is associated with a decrease in roost-site preferences or selectivity, an increase in mobility of individuals, and a decrease in social cohesion. These responses may reduce fitness by potentially increasing energetic expenditure, predator exposure, and a decrease in cooperative interactions. Despite these potential risks, individuals never used roost-sites other than developing furled leaves, suggesting an extreme specialization that could ultimately jeopardize the long-term persistence of this species' local populations

    Problems in obtaining precise and accurate Sr isotope analysis from geological materials using laser ablation MC-ICPMS

    Get PDF
    This paper reviews the problems encountered in eleven studies of Sr isotope analysis using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) in the period 1995–2006. This technique has been shown to have great potential, but the accuracy and precision are limited by: (1) large instrumental mass discrimination, (2) laser-induced isotopic and elemental fractionations and (3) molecular interferences. The most important isobaric interferences are Kr and Rb, whereas Ca dimer/argides and doubly charged rare earth elements (REE) are limited to sample materials which contain substantial amounts of these elements. With modern laser (193 nm) and MC-ICPMS equipment, minerals with >500 ppm Sr content can be analysed with a precision of better than 100 ppm and a spatial resolution (spot size) of approximately 100 μm. The LA MC-ICPMS analysis of 87Sr/86Sr of both carbonate material and plagioclase is successful in all reported studies, although the higher 84Sr/86Sr ratios do suggest in some cases an influence of Ca dimer and/or argides. High Rb/Sr (>0.01) materials have been successfully analysed by carefully measuring the 85Rb/87Rb in standard material and by applying the standard-sample bracketing method for accurate Rb corrections. However, published LA-MC-ICPMS data on clinopyroxene, apatite and sphene records differences when compared with 87Sr/86Sr measured by thermal ionisation mass spectrometry (TIMS) and solution MC-ICPMS. This suggests that further studies are required to ensure that the most optimal correction methods are applied for all isobaric interferences

    Production of ultrasonic vocalizations by Peromyscus mice in the wild

    Get PDF
    BACKGROUND: There has been considerable research on rodent ultrasound in the laboratory and these sounds have been well quantified and characterized. Despite the value of research on ultrasound produced by mice in the lab, it is unclear if, and when, these sounds are produced in the wild, and how they function in natural habitats. RESULTS: We have made the first recordings of ultrasonic vocalizations produced by two free-living species of mice in the genus Peromyscus (P. californicus and P. boylii) on long term study grids in California. Over 6 nights, we recorded 65 unique ultrasonic vocalization phrases from Peromyscus. The ultrasonic vocalizations we recorded represent 7 different motifs. Within each motif, there was considerable variation in the acoustic characteristics suggesting individual and contextual variation in the production of ultrasound by these species. CONCLUSION: The discovery of the production of ultrasonic vocalizations by Peromyscus in the wild highlights an underappreciated component in the behavior of these model organisms. The ability to examine the production of ultrasonic vocalizations in the wild offers excellent opportunities to test hypotheses regarding the function of ultrasound produced by rodents in a natural context
    corecore