3,830 research outputs found
Wear rates in urban rail systems
A significant part of maintenance costs in urban rail systems (metro, tram, light rapid transit/light metro) is due to wheel-rail wear. Wear rates - measured for example as depth of wear per kilometre run (rolling stock) or per train passage (rails) - depend in a complex manner on several influence factors. Among
the most important are key design factors of the rolling stock (wheel profiles, suspension characteristics), of the track (distribution of curve radii, characteristics of switches and crossings, rail profiles), of the wheel-rail interface (lubrication, materials in contact, ambient characteristics), and of
operations (frequency of traction and braking, trainset inversion policy, maintenance policy etc.). When designing an urban rail system, all of these factors have to be under control in order to limit the costs due to wheel/rail reprofiling/grinding and replacement. The state of the art allows the calculation of
wear rates given quantitative input regarding the above factors. However, it is difficult to find in the literature experimental values for calibration of wear models and indications on what is a reasonable state-of-the-art wear rate for any given type of urban rail system. In this paper we present a structured
analysis of flange wear rates found in the literature and derived from the experience of the authors, for a variety of cases, including metros and mainline rail systems. We compare the wear rates and explain their relationship with the influence factors. We then relate the wear rates with the needs in terms of
wheel reprofiling/replacement. We estimate ranges for the calibration coefficients of wear models. We present the results in a way as to allow the designer of urban rail systems to derive values for target wear rates according to their specific conditions without the need for complex simulations
Implementation of the Linear Method for the optimization of Jastrow-Feenberg and Backflow Correlations
We present a fully detailed and highly performing implementation of the
Linear Method [J. Toulouse and C. J. Umrigar (2007)] to optimize
Jastrow-Feenberg and Backflow Correlations in many-body wave-functions, which
are widely used in condensed matter physics. We show that it is possible to
implement such optimization scheme performing analytical derivatives of the
wave-function with respect to the variational parameters achieving the best
possible complexity O(N^3) in the number of particles N.Comment: submitted to the Comp. Phys. Com
Reversible optical to microwave quantum interface
We describe a reversible quantum interface between an optical and a microwave
field using a hybrid device based on their common interaction with a
micro-mechanical resonator in a superconducting circuit. We show that, by
employing state-of-the-art opto-electro-mechanical devices, one can realise an
effective source of (bright) two-mode squeezing with an optical idler (signal)
and a microwave signal, which can be used for high-fidelity transfer of quantum
states between optical and microwave fields by means of continuous variable
teleportation.Comment: 5 + 3 pages, 5 figure
Increasing future gravitational-wave detectors sensitivity by means of amplitude filter cavities and quantum entanglement
The future laser interferometric gravitational-wave detectors sensitivity can
be improved using squeezed light. In particular, recently a scheme which uses
the optical field with frequency dependent squeeze factor, prepared by means of
a relatively short (~30 m) amplitude filter cavity, was proposed
\cite{Corbitt2004-3}. Here we consider an improved version of this scheme,
which allows to further reduce the quantum noise by exploiting the quantum
entanglement between the optical fields at the filter cavity two ports.Comment: 10 pages, 7 figure
Sensitivity-bandwidth limit in a multi-mode opto-electro-mechanical transducer
An opto--electro--mechanical system formed by a nanomembrane capacitively
coupled to an LC resonator and to an optical interferometer has been recently
employed for the high--sensitive optical readout of radio frequency (RF)
signals [T. Bagci, \emph{et~al.}, Nature {\bf 507}, 81 (2013)]. Here we propose
and experimentally demonstrate how the bandwidth of such kind of transducer can
be increased by controlling the interference between two--electromechanical
interaction pathways of a two--mode mechanical system. With a
proof--of--principle device \new{operating at room temperature, we achieve a
sensitivity of 300 nV/Hz^(1/2) over a bandwidth of 15 kHz in the presence of
radiofrequency noise, and an optimal shot-noise limited sensitivity of 10
nV/Hz^(1/2) over a bandwidth of 5 kHz. We discuss strategies for improving the
performance of the device, showing that, for the same given sensitivity, a
mechanical multi--mode transducer can achieve a bandwidth} significantly larger
than that of a single-mode one
SHOULD I STAY OR SHOULD I GO? ZERO-SIZE JUMPS IN RANDOM WALKS FOR LÉVY FLIGHTS
We study Markovian continuous-time random walk models for LĂ©vy flights and we show an example in which the convergence to stable densities is not guaranteed when jumps follow a bi-modal power-law distribution that is equal to zero in zero. The significance of this result is two-fold: i) with regard to the probabilistic derivation of the fractional diffusion equation and also ii) with regard to the concept of site fidelity in the framework of LĂ©vy-like motion for wild animals.Severo Ochoa SEV-2017-071
Kondo effect of Co adatoms on Ag monolayers on noble metal surfaces
The Kondo temperature of single Co adatoms on monolayers of Ag on Cu
and Au(111) is determined using Scanning Tunneling Spectroscopy. of Co on
a single monolayer of Ag on either substrate is essentially the same as that of
Co on a homogenous Ag(111) crystal. This gives strong evidence that the
interaction of surface Kondo impurities with the substrate is very local in
nature. By comparing found for Co on Cu, Ag, and Au (111)-surfaces we
show that the energy scale of the many-electron Kondo state is insensitive to
the properties of surface states and to the energetic position of the projected
bulk band edges.Comment: 4 pages, 3 figure
Entangled light pulses from single cold atoms
The coherent interaction between a laser-driven single trapped atom and an
optical high-finesse resonator allows to produce entangled multi-photon light
pulses on demand. The mechanism is based on the mechanical effect of light. The
degree of entanglement can be controlled through the parameters of the laser
excitation. Experimental realization of the scheme is within reach of current
technology. A variation of the technique allows for controlled generation of
entangled subsequent pulses, with the atomic motion serving as intermediate
memory of the quantum state.Comment: 4 pages, 3 figures, revised version (new scheme for generation of
subsequent pairs of entangled pulses included). Accepted for publication in
Phys. Rev. Let
- …