1,863 research outputs found
Media use during adolescence: the recommendations of the Italian Pediatric Society.
BACKGROUND: The use of media device, such as smartphone and tablet, is currently increasing, especially among the youngest. Adolescents spend more and more time with their smartphones consulting social media, mainly Facebook, Instagram and Twitter because. Adolescents often feel the necessity to use a media device as a means to construct a social identity and express themselves. For some children, smartphone ownership starts even sooner as young as 7 yrs, according to internet safety experts. MATERIAL AND METHODS: We analyzed the evidence on media use and its consequences in adolescence. RESULTS: In literature, smartphones and tablets use may negatively influences the psychophysical development of the adolescent, such as learning, sleep and sigh. Moreover, obesity, distraction, addiction, cyberbullism and Hikikomori phenomena are described in adolescents who use media device too frequently. The Italian Pediatric Society provide action-oriented recommendations for families and clinicians to avoid negative outcomes. CONCLUSIONS: Both parents and clinicians should be aware of the widespread phenomenon of media device use among adolescents and try to avoid psychophysical consequences on the youngest
Lipid metabolism in development and progression of hepatocellular carcinoma
Metabolic reprogramming is critically involved in the development and progression of cancer. In particular, lipid metabolism has been investigated as a source of energy, micro-environmental adaptation, and cell signalling in neoplastic cells. However, the specific role of lipid metabolism dysregulation in hepatocellular carcinoma (HCC) has not been widely described yet. Alterations in fatty acid synthesis, β-oxidation, and cellular lipidic composition contribute to initiation and progression of HCC. The aim of this review is to elucidate the mechanisms by which lipid metabolism is involved in hepatocarcinogenesis and tumour adaptation to different conditions, focusing on the transcriptional aberrations with new insights in lipidomics and lipid zonation. This will help detect new putative therapeutic approaches in the second most frequent cause of cancer-related death
Molecular Aspects and Treatment of Iron Deficiency in the Elderly
Iron deficiency (ID) is the most frequent nutritional deficiency in the whole population worldwide, and the second most common cause of anemia in the elderly. The prevalence of anemia is expecting to rise shortly, because of an ageing population. Even though WHO criteria define anemia as a hemoglobin serum concentration <12 g/dL in women and <13 g/dL in men, several authors propose different and specific cut-off values for the elderly. Anemia in aged subjects impacts health and quality of life, and it is associated with several negative outcomes, such as longer time of hospitalization and a higher risk of disability. Furthermore, it is an independent risk factor of increased morbidity and mortality. Even though iron deficiency anemia is a common disorder in older adults, it should be not considered as a normal ageing consequence, but a sign of underlying dysfunction. Relating to the molecular mechanism in Iron Deficiency Anemia (IDA), hepcidin has a key role in iron homeostasis. It downregulates the iron exporter ferroportin, inhibiting both iron absorption and release. IDA is frequently dependent on blood loss, especially caused by gastrointestinal lesions. Thus, a diagnostic algorithm for IDA should include invasive investigation such as endoscopic procedures. The treatment choice is influenced by the severity of anemia, underlying conditions, comorbidities, and the clinical state of the patient. Correction of anemia and iron supplementation should be associated with the treatment of the causal disease
Forman's Ricci curvature - From networks to hypernetworks
Networks and their higher order generalizations, such as hypernetworks or
multiplex networks are ever more popular models in the applied sciences.
However, methods developed for the study of their structural properties go
little beyond the common name and the heavy reliance of combinatorial tools. We
show that, in fact, a geometric unifying approach is possible, by viewing them
as polyhedral complexes endowed with a simple, yet, the powerful notion of
curvature - the Forman Ricci curvature. We systematically explore some aspects
related to the modeling of weighted and directed hypernetworks and present
expressive and natural choices involved in their definitions. A benefit of this
approach is a simple method of structure-preserving embedding of hypernetworks
in Euclidean N-space. Furthermore, we introduce a simple and efficient manner
of computing the well established Ollivier-Ricci curvature of a hypernetwork.Comment: to appear: Complex Networks '18 (oral presentation
Effective dynamics using conditional expectations
The question of coarse-graining is ubiquitous in molecular dynamics. In this
article, we are interested in deriving effective properties for the dynamics of
a coarse-grained variable , where describes the configuration of
the system in a high-dimensional space , and is a smooth function
with value in (typically a reaction coordinate). It is well known that,
given a Boltzmann-Gibbs distribution on , the equilibrium
properties on are completely determined by the free energy. On the
other hand, the question of the effective dynamics on is much more
difficult to address. Starting from an overdamped Langevin equation on , we propose an effective dynamics for using conditional
expectations. Using entropy methods, we give sufficient conditions for the time
marginals of the effective dynamics to be close to the original ones. We check
numerically on some toy examples that these sufficient conditions yield an
effective dynamics which accurately reproduces the residence times in the
potential energy wells. We also discuss the accuracy of the effective dynamics
in a pathwise sense, and the relevance of the free energy to build a
coarse-grained dynamics
Invariant measures of the 2D Euler and Vlasov equations
We discuss invariant measures of partial differential equations such as the
2D Euler or Vlasov equations. For the 2D Euler equations, starting from the
Liouville theorem, valid for N-dimensional approximations of the dynamics, we
define the microcanonical measure as a limit measure where N goes to infinity.
When only the energy and enstrophy invariants are taken into account, we give
an explicit computation to prove the following result: the microcanonical
measure is actually a Young measure corresponding to the maximization of a
mean-field entropy. We explain why this result remains true for more general
microcanonical measures, when all the dynamical invariants are taken into
account. We give an explicit proof that these microcanonical measures are
invariant measures for the dynamics of the 2D Euler equations. We describe a
more general set of invariant measures, and discuss briefly their stability and
their consequence for the ergodicity of the 2D Euler equations. The extension
of these results to the Vlasov equations is also discussed, together with a
proof of the uniqueness of statistical equilibria, for Vlasov equations with
repulsive convex potentials. Even if we consider, in this paper, invariant
measures only for Hamiltonian equations, with no fluxes of conserved
quantities, we think this work is an important step towards the description of
non-equilibrium invariant measures with fluxes.Comment: 40 page
Immunity as cornerstone of non-alcoholic fatty liver disease: The contribution of oxidative stress in the disease progression
Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome and has become the major cause of chronic liver disease, especially in western countries. NAFLD encompasses a wide spectrum of hepatic histological alterations, from simple steatosis to steatohepatitis and cirrhosis with a potential development of hepatocellular carcinoma. Non-alcoholic steatohepatitis (NASH) is characterized by lobular inflammation and fibrosis. Several studies reported that insulin resistance, redox unbalance, inflammation, and lipid metabolism dysregulation are involved in NAFLD progression. However, the mechanisms beyond the evolution of simple steatosis to NASH are not clearly understood yet. Recent findings suggest that different oxidized products, such as lipids, cholesterol, aldehydes and other macromolecules could drive the inflammation onset. On the other hand, new evidence indicates innate and adaptive immunity activation as the driving force in establishing liver inflammation and fibrosis. In this review, we discuss how immunity, triggered by oxidative products and promoting in turn oxidative stress in a vicious cycle, fuels NAFLD progression. Furthermore, we explored the emerging importance of immune cell metabolism in determining inflammation, describing the potential application of trained immune discoveries in the NASH pathological context
Celebrating Cercignani's conjecture for the Boltzmann equation
Cercignani's conjecture assumes a linear inequality between the entropy and
entropy production functionals for Boltzmann's nonlinear integral operator in
rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities
and spectral gap inequalities, this issue has been at the core of the renewal
of the mathematical theory of convergence to thermodynamical equilibrium for
rarefied gases over the past decade. In this review paper, we survey the
various positive and negative results which were obtained since the conjecture
was proposed in the 1980s.Comment: This paper is dedicated to the memory of the late Carlo Cercignani,
powerful mind and great scientist, one of the founders of the modern theory
of the Boltzmann equation. 24 pages. V2: correction of some typos and one
ref. adde
- …