We discuss invariant measures of partial differential equations such as the
2D Euler or Vlasov equations. For the 2D Euler equations, starting from the
Liouville theorem, valid for N-dimensional approximations of the dynamics, we
define the microcanonical measure as a limit measure where N goes to infinity.
When only the energy and enstrophy invariants are taken into account, we give
an explicit computation to prove the following result: the microcanonical
measure is actually a Young measure corresponding to the maximization of a
mean-field entropy. We explain why this result remains true for more general
microcanonical measures, when all the dynamical invariants are taken into
account. We give an explicit proof that these microcanonical measures are
invariant measures for the dynamics of the 2D Euler equations. We describe a
more general set of invariant measures, and discuss briefly their stability and
their consequence for the ergodicity of the 2D Euler equations. The extension
of these results to the Vlasov equations is also discussed, together with a
proof of the uniqueness of statistical equilibria, for Vlasov equations with
repulsive convex potentials. Even if we consider, in this paper, invariant
measures only for Hamiltonian equations, with no fluxes of conserved
quantities, we think this work is an important step towards the description of
non-equilibrium invariant measures with fluxes.Comment: 40 page