136 research outputs found

    Objective prior for the number of degrees of freedom of a t distribution

    Get PDF
    In this paper, we construct an objective prior for the degrees of freedom of a t distribution, when the parameter is taken to be discrete. This parameter is typically problematic to estimate and a problem in objective Bayesian inference since improper priors lead to improper posteriors, whilst proper priors may dom- inate the data likelihood. We find an objective criterion, based on loss functions, instead of trying to define objective probabilities directly. Truncating the prior on the degrees of freedom is necessary, as the t distribution, above a certain number of degrees of freedom, becomes the normal distribution. The defined prior is tested in simulation scenarios, including linear regression with t-distributed errors, and on real data: the daily returns of the closing Dow Jones index over a period of 98 days

    An Objective Bayesian Criterion to Determine Model Prior Probabilities

    Get PDF
    We discuss the problem of selecting among alternative parametric models within the Bayesian framework. For model selection problems which involve non-nested models, the common objective choice of a prior on the model space is the uniform distribution. The same applies to situations where the models are nested. It is our contention that assigning equal prior probability to each model is over simplistic. Consequently, we introduce a novel approach to objectively determine model prior probabilities conditionally on the choice of priors for the parameters of the models. The idea is based on the notion of the worth of having each model within the selection process. At the heart of the procedure is the measure of this worth using the Kullback--Leibler divergence between densities from di?erent models

    Bayesian Models Applied to Cyber Security Anomaly Detection Problems

    Full text link
    Cyber security is an important concern for all individuals, organisations and governments globally. Cyber attacks have become more sophisticated, frequent and dangerous than ever, and traditional anomaly detection methods have been proved to be less effective when dealing with these new classes of cyber threats. In order to address this, both classical and Bayesian models offer a valid and innovative alternative to the traditional signature-based methods, motivating the increasing interest in statistical research that it has been observed in recent years. In this review we provide a description of some typical cyber security challenges, typical types of data and statistical methods, paying special attention to Bayesian approaches for these problems
    • …
    corecore