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Objective Prior for the Number of Degrees of
Freedom of a t Distribution

Cristiano Villa ∗ and Stephen G. Walker †

Abstract. In this paper, we construct an objective prior for the degrees of freedom
of a t distribution, when the parameter is taken to be discrete. This parameter is
typically problematic to estimate and a problem in objective Bayesian inference
since improper priors lead to improper posteriors, whilst proper priors may dom-
inate the data likelihood. We find an objective criterion, based on loss functions,
instead of trying to define objective probabilities directly. Truncating the prior on
the degrees of freedom is necessary, as the t distribution, above a certain number
of degrees of freedom, becomes the normal distribution. The defined prior is tested
in simulation scenarios, including linear regression with t-distributed errors, and
on real data: the daily returns of the closing Dow Jones index over a period of 98
days.

Keywords: Objective prior, t distribution, Kullback–Leibler divergence, Linear
regression, Self-information loss function, Robust analysis, Financial return

1 Introduction

In disciplines such as finance and economics, extreme values tend to occur at a prob-
ability rate that is too high to be effectively modelled by distributions with appealing
analytical properties, such as the normal. This is the case, for example, of financial
asset returns and market index values, whose behaviour of extreme values is better
represented by distributions with tails heavier than the normal distribution; in partic-
ular, see Fabozzi et al. (2010), the t distribution represents an appealing alternative.
Furthermore, in Maronna (1976), Lange et al. (1989) and West (1984), it is pointed
out that heavy-tailed data are more efficiently handled by regression models for which
the error term is assumed to be t-distributed. In fact, it is shown that the influence
of outliers is significantly reduced, leading to a more robust analysis; in particular, the
smaller the number of degrees of freedom, the more robust the analysis tends to be.
As such, the possibility of discerning between t distributions with different numbers of
degrees of freedom, especially when the value of this parameter is small, represents an
important step of the regression analysis and, in general, whenever a t model is deemed
to be the most suitable in representing the observations of interest.

In this paper, we introduce an objective Bayesian prior mass function for the degrees
of freedom ν of a t distribution, conditional on the mean parameter µ and variance
parameter σ2. Hence, it will be of the form π(ν|µ, σ2).
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There are two fundamental aspects which have to be discussed, in our opinion, as
preliminary remarks to the formal definition of the objective prior for ν. The first remark
has a general characterization and it refers to a conceptual incongruence in a Bayes
theorem application when the prior is defined through common objective procedures;
the second remark is specific to the definition of a prior distribution for ν and it argues
that this distribution should be truncated. Let us discuss the former remark first.

In a subjective Bayesian approach, π(θ) represents the initial degree of belief that we
have about the possible values that θ can take within the parameter space. Then,
by combining it with the information contained in the observed data, expressed by
the likelihood function f(x|θ), the initial beliefs are updated and become the posterior
probability distribution. The prior and posterior should retain the same meaning.

If the probability distribution π(θ) is determined through objective Bayesian methods,
this distribution will often be improper. This fact raises some important concerns about
defining objective probabilities directly. Contrary to the subjective approach, whereby
the prior and posterior retain the same meaning, the same can not be said of an objective
prior, for the posterior derived from it must at some point represent beliefs. We believe
that the solution to this difficulty is, not to be objective in assigning a mass to every
element of the parameter space, but by assigning a worth to every one of them. In other
words, to work with losses instead of probabilities. Recalling that objectivity arises from
the absence of knowledge, actual or alleged, about the true value of the parameter of
interest, we can see the justification of the proposed approach, as we can still have an
idea on the worth that each parameter value represents in the model. The worth of an
element of the parameter space can be assessed by describing and evaluating what is
lost if this value is removed. And by assigning the mass to each parameter value by a
measure of its worth, we are not subject to the constraint of properness, intrinsic in a
probability measure.

Let us denote by π(ν) the prior distribution for the discrete parameter ν = 1, 2, . . . ,∞
representing the number of degrees of freedom of a t distribution. If a prior π has been
assigned then we link this to a worth of each element by means of the self-information
loss function − log π(ν). The self-information loss function (also known as the log-loss
function in machine learning) measures the performance of a probability assignment
with respect to an outcome. Thus, for every probability assignment π = {π(ν), ν ∈ N}
over the space X , with x ∈ X , the self-information loss function is defined as

l(π, ν) = − log π(ν).

More details and properties of this particular loss function can be found, for example,
in Merhav and Feder (1998). We can then identify an appropriate objective way to
associate a loss to each ν, representing its worth in the model line–up, and the prior
distribution π(ν) then follows. Furthermore, we note that in this way the Bayesian
approach is conceptually consistent, as we update an initial (i.e. prior) worth assigned
to ν, through the application of Bayes’ theorem, to obtain the resulting worth expressed
by − log π(ν|x). Indeed, there is an elegant procedure akin to Bayes which works from
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a loss point of view, namely that

− log π(ν|x) = K − log f(x|ν)− log π(ν)

which has the interpretation of

Loss(ν|x, π) = K + Loss(ν|x) + Loss(ν|π).

This is a cumulative loss function for assessing the loss of ν in the presence of two pieces
of mutual information x and π. Here K is a constant which does not depend on ν.

To better illustrate how an objective criterion to assign a worth to each element of the
parameter space can be derived, the following example may be helpful. Let us assume
we have a scenario where the possible models are three: f1, f2 and f3, that is t(ν1, µ, σ

2),
t(ν2, µ, σ

2) and t(ν3, µ, σ
2). Let us also assume that f1 and f2 are very similar, whilst

f3 is significantly different from the other two. For example, we can imagine that f1
and f2 have consecutive numbers of degrees of freedom and f3 a much larger (or much
smaller) one. We do not question the rational behind this choice of model options, we
just assume that there is one. If we remove from the scenario either f1 or f2, as they
are relatively close, there is no appreciable change in the whole structure of options, as
we still have the remaining model (either f2 or f1) to support that specific position.
On the other hand, if we remove f3, the structure of options is considerably different
from the original, as only two very similar options are left. We then see that f3 is more
valuable than f1 or f2, because, if it is removed, the scenario is significantly altered; or,
alternatively, we can say that the loss in removing f3 is higher than the loss in removing
either f1 or f2. An important aspect is that the loss associated to each model takes into
consideration the surrounding models.

The worth to be assigned to each model is equal to the Kullback–Leibler divergence
measured from the model to its nearest neighbour. This is justified by the fact that,
if the model is misspecified, the posterior distribution asymptotically accumulates at
the nearest model with respect to the Kullback–Leibler divergence (Berk 1966). If we
consider the family of distributions f(·|θ), where θ ∈ Θ is the discrete parameter char-
acterising it, the result of Berk (1966) says that, if θ0 is the true parameter value, and
it is not considered, then the posterior distribution π(θ|x) ∝ f(x|θ)π(θ) will accumulate
at θ′, where θ′ is the parameter value such that DKL(f(x|θ0)‖f(x|θ′)) attains its mini-
mum. Thus, this divergence represents the utility (i.e. worth) of having θ0 in Θ, that is
u(θ0), when it is the true parameter value. So the more isolated θ0 is, the greater is its
utility. Given that in decision theory (Berger 1985) the loss corresponds to (in general)
negative the utility, we have that −DKL(f(x|θ0)‖f(x|θ′)) represents the loss in keeping
θ0.

The second remark we would like to discuss originates from the well known property
of the t distribution to converge to a normal distribution when the degrees of freedom
tend to infinity. That is, from a certain point in the parameter space of degrees of
freedom, the distribution can be considered as normal. The key point we wish to make
is that it is not fundamental where the quantification of this turning point is (i.e. where
a t distribution turns into a normal), but the fact that there is one, and that every
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t distribution with a value of ν equal or larger than this turning point is considered
the same model, that is, a normal distribution. We take this point to be 30 based
on theoretical results, see Chu (1956), and also Section 3. It follows that the set of
parameter values on which the prior π(ν) is built becomes a finite set of models and
ν translates to a label associated to each model. If we indicate the turning point as
νmax, the set of models is represented by {f1, f2, . . . , fνmax−1, fνmax}, where the first
(νmax−1) models are t distributions with degrees of freedom ν = 1, 2, . . . , νmax−1, and
fνmax

≈ N(µ, σ2).

A direct consequence of this consideration is that it reveals an important conceptual gap
common to other objective approaches to derive π(ν). Even though it is theoretically
possible to discern between two t distributions with any number of degrees of freedom,
provided a sufficiently large number of observations is available, this task loses meaning
when the number of degrees of freedom is large enough. It follows that, if we want to
assign prior mass to models, for example, in intervals [f200, . . . , f299] and [f300, . . . , f399],
this mass has to be the same for each element, as these models are in practice not
distinguishable. As such, if we define a prior of ν for values that go from one to infinity,
this prior has to be uniform in the interval [νmax,+∞), and therefore improper. But, as
we have discussed above, all the models in this interval are (approximatively) represented
by a normal distribution and, as a result, the set of options has to be finite with the
last element equal to a normal. Furthermore, as all the models from fνmax

onwards are
virtually the same model (i.e. normal), if π(ν) is defined over the whole sample space,
it means that a large amount of mass is put on the normal model. And there is no
apparent justification for this approach.

Here we review some of the objective methods to assign a prior to the number of degrees
of freedom of a t density that can be found in the literature. In most cases, the field of
interest is when the error term of a regression model is assumed to have a t distribution.

The likelihood for ν given µ and σ2 tends to a positive constant as ν → +∞ (Anscombe
1967). As such, to have a proper posterior, the prior distribution has to tend to 0 as
ν → +∞. Therefore, the natural objective prior

π(ν) ∝ 1,

cannot be adopted as the posterior would be improper. In fact, as shown in Fernandez
and Steel (1999), this behaviour of the likelihood function may lead, in general, to an
improper posterior whenever the prior distribution is improper.

To overcome this issue, Jacquier et al. (2004) proposed a truncated uniform prior on
the discrete integer degrees of freedom. In particular, they note that the variance of
a t density exists only for values of ν ≥ 3. Furthermore, for values of ν ∈ [41, 50],
the model does not have significant changes in behaviour and therefore, their discrete
uniform prior is

π(ν) ∝ 1, 3 ≤ ν ≤ 40.
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However, as seen in Fonseca et al. (2008), these type of prior probabilities are inap-
propriate, because the estimate of the number of degrees of freedom is sensitive to the
chosen truncation.

Geweke (1993) proposes a prior distribution that is exponential. In this case, the pa-
rameter ν is considered continuous and the distribution depends on a value g, which is
strictly positive

π(ν) ∝ exp {−gν} ν > 0.

This prior, in our opinion, cannot be considered as strictly objective. In fact, different
values of g will lead to a different distribution of the mass over small values of ν, where
it is more critical to be able to estimate the number of degrees of freedom. Furthermore,
as shown in Fonseca et al. (2008), the exponential prior tends to dominate the data.

In Fonseca et al. (2008), a linear regression model with p regressors and error term
t-distributed is considered. The authors define two prior distributions for ν, both based
on Jeffreys’ prior (Jeffreys 1961): the independence Jeffreys prior

πI(ν) ∝
(

ν

ν + 3

)1/2{
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2

}1/2

ν > 0, (1)

and the Jeffreys-rule prior

πJ(ν) ∝ πI(ν)

(
ν + 1

ν + 3

)p/2
ν > 0. (2)

It is shown that both priors are proper, and that they lead to proper posteriors.

Prior distributions, though not objective, for the number of degrees of freedom of a
t distribution, are given by Juárez and Steel (2010), where a non-hierarchical and a
hierarchical prior are considered. The first is a particular gamma, with parameters 2
and 1/100, leading to the density

π1(ν) =
ν

100
e−ν/10. (3)

This prior has the property of covering a large range of relevant values of degrees of
freedom and allows for all prior moments to exist. The hierarchical prior is obtained
by considering an exponential distribution for the scale parameter of the gamma, with
shape parameter 2. The resulting density is

π2(ν) = 2k
ν

(ν + k)3
,
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where k > 0 is the hyper-parameter. The authors compared the performance of their
priors with the Jeffreys’ independent prior proposed by Fonseca et al. (2008), noting
that there were no significant differences for values of ν below 50.

It has to be noted that in Geweke (1993), Fonseca et al. (2008) and Juárez and Steel
(2010), the number of degrees of freedom is considered as continuous.

We consider the parameter space of ν to be discrete, that is restricted to positive integers.
The motivation is practical. In fact, the Kullback–Leibler divergence between contiguous
densities rapidly decreases to zero, making necessary large amount of information about
ν (i.e. observations) in order to discern between different t distributions (Jacquier et al.
2004). We could densify the parameter space, for example ν = {1, 1.5, 2, 2.5, . . .} (or
even more dense), and apply our criterion to derive a prior, but the resulting increase in
precision of the estimate of ν would not be of any practical use, as, for example, there
is no sensible difference in having a t density with 7 degrees of freedom and one with
7.1 degrees of freedom.

The paper is organized as follows. In Section 2 we introduce the notation that will be
used throughout the paper, derive the Kullback–Leibler divergence for t distributions
and show the computational results related to the determination of its minimum value
(for a given ν). Section 3 is dedicated to the formal definition of the objective prior
for ν; here, we highlight the fact that this prior has to be truncated. In Section 4 we
analyse the posterior distribution by estimating the number of degrees of freedom on
simulated data. We consider the case of data t distributed, and a regression model with
t-distributed errors. An analysis on actual data, in particular on daily returns of the
closing Dow Jones index, is performed in Section 5, where we compare our results with
the ones obtained by using other objective priors for ν found in literature. Section 6
carries the final comments and discussions.

2 Preliminaries

If random variable x has a t distribution with degrees of freedom ν, location parameter
µ and scale parameter σ2, its probability density function is represented by

f(x|ν, µ, σ2) =
1

B
(
1
2 ,

ν
2

) ( 1

νσ2

) 1
2
(

1 +
(x− µ)2

νσ2

)− ν+1
2

−∞ < x <∞,

where B(·, ·) is the beta function. Both location and scale parameters are continuous,
with −∞ < µ <∞ and σ2 > 0. The density of x can equivalently be expressed in terms
of the precision parameter λ = 1/σ2 as follows

f(x|ν, µ, λ) =
1

B
(
1
2 ,

ν
2

) (λ
ν

) 1
2
(

1 +
λ(x− µ)2

ν

)− ν+1
2

−∞ < x <∞.
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For this section we focus on the particular case where µ = 0 and σ2 = 1; it is always
possible to move from a t distribution with µ = 0 and σ2 = 1 to a t distribution
with any value of the parameters (and vice versa) by simply applying the relationship
xν,µ,σ2 = µ+σxν,0,1. In any case, as we are interested in comparing t distributions that
differ only in the number of degrees of freedom, to avoid a cumbersome notation, the t
model with ν degrees of freedom and parameters µ and σ2 is represented as fν in lieu
of f(x|ν, µ, σ2).

In Section 1 we have introduced the objective criterion to define the prior for ν. This
criterion is based on the key assumption that the posterior distribution for ν, if the true
value is removed, asymptotically accumulates on the nearest model with respect to the
Kullback–Leibler divergence.

Let us consider the following t distributions: fν and fν′ , with ν = 1, 2, . . . and ν′ =
1, 2, . . .. Also, we assume that ν 6= ν′ and that location and scale parameters are equal
for both densities with µ = 0 and σ2 = 1. The Kullback–Leibler divergence (Kullback
and Leibler (1951)) between fν and fν′ is given by

DKL(fν‖fν′) =

∫ ∞
−∞

fν log

(
fν
fν′

)
dx

=

∫ ∞
−∞

1√
νB(1/2, ν/2)

(
1 +

x2

ν

)− ν+1
2

log


1√

νB(1/2, ν/2)

(
1 +

x2

ν

)− ν+1
2

1√
ν′B(1/2, ν′/2)

(
1 +

x2

ν′

)− ν′+1
2

 dx

= log

{√
ν′B( 1

2 ,
ν′

2 )
√
νB( 1

2 ,
ν
2 )

}
− ν + 1

2
Eν
[
log

(
1 +

x2

ν

)]
+
ν′ + 1

2
Eν
[
log

(
1 +

x2

ν′

)]
(4)

where Eν represents the expected value with respect to fν . To identify the nearest
model, in terms of Kullback–Leibler divergence, we have numerically computed the
expression in (4), for ν > 1 to compare DKL(fν‖fν−1) and DKL(fν‖fν+1). In Table 1
we have the computational results for the first 29 values of ν. The results obtained show
that DKL(fν‖fν−1) > DKL(fν‖fν+1), for any ν, and that the divergence decreases as
the number of degrees of freedom tends to infinity. This latter result is intuitive and
obvious, as the t distribution converges in distribution to the normal.

In Section 1, we have anticipated that the prior we propose is truncated, and that
this is done to avoid assigning more mass than appropriate to the normal model. As
such, the Kullback–Leibler divergence at the points of the parameter space near to and
at the truncation have to be discussed separately. First, we note that the minimum
Kullback–Leibler divergence at the truncation point is given by



204 Objective Prior for t-density Degrees of Freedom

ν DKL(fν‖fν−1) DKL(fν‖fν+1)
2 0.0621 0.0192
3 0.0136 0.0059
4 0.0047 0.0024
5 0.0020 0.0012
6 0.0010 6.3640× 10−04

7 5.7683× 10−04 3.7607× 10−04

8 3.4728× 10−04 2.3658× 10−04

9 2.2150× 10−04 1.5632× 10−04

10 1.4789× 10−04 1.0746× 10−04

11 1.0249× 10−04 7.6319× 10−05

12 7.3261× 10−05 5.5705× 10−05

13 5.3751× 10−05 4.1614× 10−05

14 4.0326× 10−05 3.1717× 10−05

15 3.0844× 10−05 2.4599× 10−05

16 2.3993× 10−05 1.9373× 10−05

ν DKL(fν‖fν−1) DKL(fν‖fν+1)
17 1.8943× 10−05 1.5465× 10−05

18 1.5155× 10−05 1.2496× 10−05

19 1.2268× 10−05 1.0207× 10−05

20 1.0037× 10−05 8.4196× 10−06

21 8.2910× 10−06 7.0071× 10−06

22 6.9087× 10−06 5.8791× 10−06

23 5.8028× 10−06 4.9693× 10−06

24 4.9096× 10−06 4.2291× 10−06

25 4.1819× 10−06 3.6217× 10−06

26 3.5841× 10−06 3.1197× 10−06

27 3.0894× 10−06 2.7018× 10−06

28 2.6773× 10−06 2.3516× 10−06

29 2.3316× 10−06 2.0564× 10−06

30 2.0399× 10−06 1.8061× 10−06

Table 1: Comparison of the Kullback–Leibler divergence DKL(fν‖fν−1) and
DKL(fν‖fν+1) for ν = 2, . . . , 30. The distance from ν to ν + 1 is smaller than the
distance from ν to ν − 1, for any value of ν.

DKL(N0,1‖fν) =

∫ ∞
−∞

N0,1 log

(
N0,1

fν

)
dx

= log

{√
νB( 1

2 ,
ν
2 )

√
2π

}
− 1

2
EN

(
x2
)

+
ν + 1

2
EN

{
log

(
1 +

x2

ν

)}
, (5)

where N0,1 is the standard normal, and EN represents the expected value with re-
spect to N0,1. If we indicate by fνmax

the normal model at the truncation point,
the nearest distribution to fνmax−1 is fνmax−2 , as the numerical computation in Ta-
ble 2 shows. The results can be summarised as follows. If the set of densities is
given by

{
f1, f2, . . . , fνmax−1

, fνmax

}
, with fνmax

≈ N(0, 1), the minimum divergence
for ν = 1, . . . , νmax−2 is DKL(fν‖fν+1); for fνmax−1

and fνmax
it is DKL(fν‖fν−1).

3 The Objective prior

To define the prior mass function for the degrees of freedom ν of a t distribution, we need
to make the following considerations. We assume that the location parameter µ and
the scale parameter σ2 (or, equivalently, the precision λ) are known. Let us consider
a random variable x with a t distribution with parameters ν, µ and σ2. Therefore,

for ν → +∞ we have x
d−→ N(µ, σ2). It is common practice to assume normality for

ν ≥ 30. Chu (1956) shows that the proportional error in using the distribution function
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ν DKL(fνmax−1
‖fνmax−2

) DKL(fνmax−1
‖fνmax

)
30 2.0399× 10−06 0.0021
60 1.3121× 10−07 0.0005× 10−04

90 2.6168× 10−08 0.0002× 10−04

120 8.3194× 10−09 0.0001× 10−04

150 3.4174× 10−09 7.9029× 10−05

180 1.6513× 10−09 5.4735× 10−05

Table 2: Comparison of the Kullback–Leibler divergence from fνmax−1
to fνmax−2

and
from fνmax−1

to fνmax
, with fνmax

≈ N(0, 1). It can be noted that the last t distribution
is closer to the t distribution on its left than to the standard normal.

of a standard normal, Φ(x), as an approximation to the distribution function of x,
F (x), is smaller than 1/ν for every ν ≥ 8, where the proportional error is defined as
E = |(F (x)/Φ(x))−1|. In fact, the approximation of a t distribution to a normal density
is always to a certain level of precision and, apart from computational limitations, it is
always possible to find a sample size large enough to be able to discriminate the two
distributions for a given precision level. In any case, the prior mass function for the
parameter ν is defined over a set of models composed by t distributions with increasing
number of degrees of freedom and, as a final model, a normal distribution. This normal
distribution can be seen as the model that incorporates all the remaining t distributions
for which we assess that the value of ν is too high to make them distinguishable from
a normal. Therefore, the prior π(ν) is a function that associates a mass to each model
in the finite set

{
f1, f2, . . . , fνmax−1 , fνmax

}
, where fν (for ν = 1, . . . , νmax−1) is a t

distribution with ν degrees of freedom, and fνmax
is the normal distribution N(µ, σ2).

For the remainder of this section, we focus on the special case where µ = 0 and σ2 = 1,
as this simplifies the notation and does not result in any loss of generality. We have
introduced in Section 1 the fact that, if the true model is removed from the set of all
possible models, then the posterior distribution will tend to accumulate on the nearest
model in terms of the Kullback–Leibler divergence, see also Dmochowski (1996). Then,
minus the divergence represents the loss we would incur if the removed model is the
true one, that is

l(ν) =

{
−DKL(fν‖fν−1) if ν ≥ νmax − 1

−DKL(fν‖fν+1) if ν < νmax − 1,

and the derivation of the prior probability from this loss is given by the self-information
loss function

− log π(ν) =

{
−DKL(fν‖fν−1) if ν ≥ νmax − 1

−DKL(fν‖fν+1) if ν < νmax − 1.
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The prior mass to be put on each model in the set of options is given by

π(ν) ∝

{
exp {DKL(fν‖fν−1)} if ν ≥ νmax − 1

exp {DKL(fν‖fν+1)} if ν < νmax − 1.
(6)

The prior for values of ν < νmax− 1 is obtained by replacing equation (4) in the first of
(6)

π(ν) ∝
√
ν + 1B

(
1
2 ,

ν+1
2

)
√
νB
(
1
2 ,

ν
2

) exp

{
−ν + 1

2
Eν
[
log

(
1 +

x2

ν

)]
+
ν + 2

2
Eν
[
log

(
1 +

x2

ν + 1

)]}
.

(7)

The prior mass for νmax − 1 is given by replacing (4) in the second of (6), for which we
set ν′ = νmax − 2:

π(ν−1) ∝

√
ν−1 − 1B

(
1
2 ,

ν−1−1
2

)
√
ν−1B

(
1
2 ,

ν−1

2

) exp

{
−ν−1 + 1

2
Eν−1

[
log

(
1 +

x2

ν−1

)]
+
ν−1
2

Eν−1

[
log

(
1 +

x2

ν−1 − 1

)]}
.

(8)

Note that, for simplicity in the notation, in equation (8) we have replaced νmax − 1 by
ν−1. Finally, the prior for νmax is obtained by replacing (5), for which ν = νmax − 1, in
the second equation of (6), obtaining

π(νmax) ∝
√
ν−1B

(
1
2 ,

ν−1

2

)
√

2π
exp

{
−1

2
EN

(
x2
)

+
ν−1
2

EN
[
log

(
1 +

x2

ν−1

)]}
. (9)

To have a picture of the prior on ν, we have plotted its behaviour for three distinctive
values of νmax; in particular, in Figure 1 we have explored the cases where the prior has
been truncated at ν = 30, 60 and 90. The prior puts the highest value of mass on the first
model, the t distribution with one degree of freedom, and gradually decreases toward
one as ν increases. This is a direct consequence of the fact that the models become more
and more similar to each other, resulting in a Kullback–Leibler divergence converging
to 0. The priors look uniform for ν > 5; however this is a perception caused by the fact
that the scale is distorted by the larger values of the prior for the small values. While
the prior does look uniform, it is not and the subtle differences are sufficient for the
prior not to behave as a uniform prior. And something close to uniform for high degrees
of freedom is coherent. For if mass π(ν) has been put on ν then one would expect the
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Figure 1: Normalised prior distributions for ν truncated at νmax = 30, νmax = 60 and
νmax = 90.

mass on π(ν+1) to be very similar simply because the fν and fν+1 are almost the same
density.

The prior distribution has also been analysed for t distributions with different values of
µ and σ2. We have observed that the prior is not affected by changes in the location
parameter µ. Although the scale parameter σ2 has some effect on the prior, that is a
larger mass is assigned to values of ν ≤ 5 for increasing values of σ2, there is no change
in the tail of the distribution. However, the posterior is not significantly affected by
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this, given that the main effect of the prior on the posterior is in the tails, where the
priors are remarkably similar (Berger et al. 2012).

4 Posterior analysis

4.1 Sampling algorithm

By combining the likelihood function for parameter ν (given µ and σ2) for a t distribu-
tion, that is

L(ν|µ, σ2, x) =

n∏
i=1

{
1

B (1/2, ν/2)

(
1

νσ2

)1/2(
1 +

(xi − µ)2

νσ2

)− ν+1
2

}
,

with the appropriate prior for ν in (7), (8) or (9), in which we have included parameters
µ and σ2, we obtain, respectively, the following three posterior distributions

π(ν|µ, σ2, x) ∝
n∏
i=1

{
1

B (1/2, ν/2)

(
1

νσ2

)1/2(
1 +

(xi − µ)2

νσ2

)− ν+1
2

}
×√

σ2(ν + 1)B
(
1
2 ,

ν+1
2

)
√
σ2νB

(
1
2 ,

ν
2

) exp

{
−ν + 1

2
Eν
[
log

(
1 +

(x− µ)2

σ2ν

)]
+
ν + 2

2
Eν
[
log

(
1 +

(x− µ)2

σ2(ν + 1)

)]}
,

for values of ν = 1, . . . , νmax − 2;

π(ν−1|µ, σ2, x) ∝
n∏
i=1

{
1

B (1/2, ν/2)

(
1

νσ2

)1/2(
1 +

(xi − µ)2

νσ2

)− ν+1
2

}
×

√
σ2(ν−1 − 1)B

(
1
2 ,

ν−1−1
2

)
√
σ2ν−1B

(
1
2 ,

ν−1

2

) exp

{
−ν−1 + 1

2
×

Eν−1

[
log

(
1 +

(x− µ)2

σ2ν−1

)]
+
ν−1
2

Eν−1

[
log

(
1 +

(x− µ)2

σ2(ν−1 − 1)

)]}
,

for ν = νmax − 1; and
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π(νmax|µ, σ2, x) ∝
n∏
i=1

{
1

B (1/2, ν/2)

(
1

νσ2

)1/2(
1 +

(xi − µ)2

νσ2

)− ν+1
2

}
×√

σ2ν−1B
(
1
2 ,

ν−1

2

)
√

2πσ2
exp

{
−1

2
EN

[
(x− µ)2/σ2

]
+
ν−1
2

EN
[
log

(
1 +

(x− µ)2

σ2ν−1

)]}
for ν = νmax. It has to be noted that the posterior distribution is proper as it is
finite. Furthermore, the actual posterior for the general case, that is when µ 6= 0
and σ2 6= 1, needs to take into consideration the priors for these parameters. We have
chosen proper priors for both the location and the scale parameters so that the posterior
distributions are proper as well. In particular, π(µ) is normally distributed and π(σ2)
has an inverse gamma distribution, both with large variance. However, we have also run
the simulations with the well known objective priors, that is π(µ) ∝ 1 and π(σ2) ∝ 1/σ2,
and no significant differences were seen.

The above expressions are not analytically tractable. Thus, to study the posterior
distribution of the number of degrees of freedom ν, it is necessary to use Monte Carlo
methods.

4.2 Independent and identically distributed sample

For the first simulation study, we have considered drawing an independent and iden-
tically distributed sample from a t density with known location and scale parameter,
that is µ = 0 and σ2 = 1. To be able to compare the results with the objective priors
proposed by Fonseca et al. (2008), we have obtained the frequentist mean squared error
from the median of the posterior distribution for ν, and the frequentist coverage of the
95% credible intervals. The simulation has been performed for ν = 1, . . . , 20. We have
considered both a relatively small sample size, n = 30, and a relatively large sample
size n = 100. In both cases, our prior has been truncated at νmax = 31, meaning that
we consider f31 ≈ N(0, 1).

The results of the simulation for n = 100 are shown in Figure 2. Although the values of
the number of degrees of freedom in the simulations are discrete (i.e. integers from 1 to
20), the plots in the figure represent continuous lines, as this allows for a clearer basis
for the comparison. The plot on the left shows the relative mean squared error from the
median for ν. This index is given by

√
MSE(ν)/ν, with MSE(ν) = E{(ν−m)2}, where

m represents the median of the posterior π(ν|x), ν = 1, . . . , 20. We have compared our
prior with the prior proposed by Fonseca et al. (2008), that is independence Jeffreys’
prior (1) and Jeffreys-rule prior (2). From the simulation results, the performance of the
posterior median is good for all the priors if we exclude a slightly smaller relative mean
squared error of Jeffreys-rule prior and a frequentist coverage below the 95% threshold
for the independence Jeffreys’ prior in the initial region of the parameter space.
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Figure 2: Frequentist properties of our prior (continuous), independence Jeffreys’ prior
(dashed) and Jeffreys-rule prior (dotted), for n = 100. The left figure shows the square
root of the relative mean squared error from the median of the posterior for ν. The
right figure shows the frequentist coverage of the 95% credible intervals for ν.

Figure 3 shows the results for n = 30. As for the previous case, the plots report
results by means of continuous lines to ease the analysis and the comparisons. Given
that the sample size is relatively small, the mean squared error tends to be larger, in
particular for values of ν smaller than 10. The frequentist performance for Jeffreys-rule
prior is poor for any value simulated of ν. Our prior and independence Jeffreys’ prior
have similar performance, with a better relative mean squared error for the latter. To
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Figure 3: Frequentist properties of our prior (continuous), independence Jeffreys’ prior
(dashed) and Jeffreys-rule prior (dotted), for n = 30. The left figure shows the square
root of the relative mean squared error from the median of the posterior for ν. The
right figure shows the frequentist coverage of the 95% credible intervals for ν.

have a feeling for the posterior for ν, in Figure 4 we have plotted the results for one
simulated sample. In particular, from a t distribution with ν = 3, µ = 0 and σ2 = 1:
x ∼ t(3, 0, 1). The figure includes progressive median, the posterior samples and the
histogram of the posterior distribution. In addition, we have reported the statistics of
the posterior distribution in Table 3. In the last simulations study for an i.i.d. sample,
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Figure 4: Progressive median (top), posterior sample (middle) and posterior histogram
(bottom) of the parameter ν for an independent sample of size n = 100 drawn from a t
distribution with ν = 3, µ = 0 and σ2 = 1.

we have analysed the behaviour of our prior distribution, truncated at νmax = 31, with
data simulated from a t distribution with 50 degrees of freedom. It can then be treated
as if the data was originated by a standard normal model. In this circumstance, it is
more meaningful to analyse one sample only. In fact, the frequentist coverage of the
95% credible interval is zero, as the true value (ν = 50, in this case) is never included
in the interval. In Figure 5, we have plotted the posterior distribution for ν. The
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Parameter Mean Median C.I. (95%)
ν 3.12 3 (2, 6)
µ 0.08 0.08 (-0.17, 0.33)
σ2 1.09 1.07 (0.70, 1.59)

Table 3: Posterior mean, median and 95% credible interval for the simulated data from
a t distribution with ν = 3, µ = 0 and σ2 = 1, using our prior.

posterior distribution tends to accumulate towards the truncation point, suggesting a
normal model or a t density with a relatively high number of degrees of freedom, which
is approximatively equivalent.
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Figure 5: Posterior distribution of the parameter ν with data simulated from a t density
with 50 degrees of freedom.

4.3 Regression model

The second simulation study we carried out is on a regression model where the errors
are t distributed. This is quite typical when financial quantities are involved. In fact,
the distribution of these quantities tends to have heavier tails than a normal density;
therefore, departure from normality for the errors has to be expected, and the likely
presence of outliers needs to be considered in order to have robust estimates. In par-
ticular, it has been shown that the t distribution is, quite often, more appropriate than
the normal distribution to model the error terms of a linear regression model. For our
simulation study, we have considered a model with four covariates

yi | xi ∼ t(β0 + β1x1i + · · ·+ β4x4i, σ
2|ν) i = 1, . . . , n,

where β0, β1, β2, β3 and β4 are the regression parameters, σ2 the regression variance
and ν the number of degrees of freedom of the t-distributed errors. For the purpose of
this simulation, we have set β0 = 2, β1 = 1, β2 = 0.3, β3 = 0.9, β4 = 1, σ2 = 1.5 and
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ν = 1, . . . , 20. Furthermore, to have a direct comparison with the results in Fonseca
et al. (2008), we have assumed the covariates are independent. Similarly as in Section
4.2, the analysis has been carried out for a relatively large sample size (n = 100) and
a relatively small sample size (n = 30). The results of the simulations are shown in
Figure 6 where, as done in Section 4.2, although the parameter is discrete, we have
used continuous lines to improve the readability of the graphs. The figure shows the
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Figure 6: Frequentist result of the simulation of the regression model with n = 100
(left side) and n = 30 (right side). For each sample size, we have the mean squared
error from the median (top graph) and the frequentist coverage of the 95% credible
interval (bottom graph). Each plot has our prior (continuous), independent Jeffreys’
prior (dashed) and Jeffreys-rule prior (dotted).

frequentist performances of our prior together with the ones of the independent Jeffreys’
prior and Jeffreys-rule prior. We note that the mean squared error, in general, tends to
be relatively large for values of ν between 2 and 8; as expected, the value of the index
is larger for the case n = 30 than for the case n = 100. In terms of coverage, our prior
performs well in both cases; the independence Jeffreys’ prior performs well too, whilst
the Jeffreys-rule prior has a drop in the performance when n = 30.

We have selected a particular sample from a regression model with one covariate to
illustrate the behaviour of the posterior for ν. This model has, in particular, β0 = β1 =
10, σ2 = 4 and ν = 5. Figure 7 shows the chains of the simulation for each parameter,
alongside the histogram of the posterior. The sample has size n = 100 and has been
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Figure 7: Sample (left) and histogram (right) of the posterior distributions for regres-
sion parameters ν (top), β0 (middle-top), β1 (middle-bottom) and σ2 (bottom). The
parameters of the regression model from which the data were sampled were ν = 5,
β0 = 10, β1 = 10 and σ2 = 4.

drawn from a regression model with a t distributed error term with ν = 5. Table 4
reports the summary statistics of the four posteriors.
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Parameter Mean Median C.I. (95%)
ν 5 4.67 (4, 6)
β0 9.99 9.99 (9.70, 10.26)
β1 10.17 10.17 (9.68, 10.67)
σ2 3.89 3.87 (3.36, 4.50)

Table 4: Posterior median and 95% credible interval for the regression simulation. The
parameters were set to ν = 5, β0 = 10, β1 = 10 and σ2 = 4.

5 Application

To illustrate the proposed prior on real data, we analyse a sample of the daily closing
values of the Dow Jones Industrial Average index of the U.S. stock market. In particular,
we consider the data from 11 November 2008 to 4 May 2009, that is 98 observations.
This data sample is part of a wide sample analysed in Lin et al. (2012), which ranged
from 22 October 2008 to 22 October 2009. Given that the objective of Lin et al. (2012)
was to estimate variance change-points in the series, we have focussed our analysis on
a subset with estimated constant variance. The actual analysis has been performed on
the daily returns, multiplied by 100. That is, Xd = {(Yd+1 − Yd) /Yd} 100, where Yd is
the market index at day d. The transformed data, for the period of interest, is plotted
in Figure 8. It can be noted that the series is stationary, and that its variance can be
reasonably considered as constant (for the period). In Table 5 we have reported some
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Figure 8: Daily returns (multiplied by 100) of the closing Dow Jones index from 11
November 2008 to 4 May 2009.

basic descriptive statistics of the series. The kurtosis is larger than 3 and even though
the distribution of the returns does not have tails much heavier than a normal, it seems
to be appropriate to consider a t model. Specifically, the model is

Xd = µ+ εd d = 1, . . . , 98,

where εd ∼ t(0, σ2, ν). The results of the simulation are compared, when appropriate,
with the ones in (Lin et al. 2012).
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Mean 0.0035
Variance 4.4813
Skewness 0.3216
Kurtosis 3.5626

Table 5: Descriptive statistics of the daily Dow Jones index returns from 11 November
2008 to 4 May 2009.

Parameter Mean Median C.I. (95%)
ν 9.96 8 (2, 26)
µ -0.05 -0.05 (-0.45, 0.36)
σ2 3.07 3.21 (0.03, 5.61)

Table 6: Mean, median and 95% credible interval for the number of degrees of freedom,
location and scale parameters for the daily returns of the Dow Jones index, from 11
November 2008 to 4 May 2009.

We have obtained the posterior distributions for the three parameters by Markov chain
Monte Carlo simulation methods. In Figure 9 we have plotted the posterior sample, the
progressive median and the posterior histogram of the number of degrees of freedom ν
only. As the posterior distribution of ν is skewed, the median represents the appropriate
estimate of the true value of the parameter. The posterior statistics of the parameters
are reported in Table 6. The results from (Lin et al. 2012) are, ν = 8.4873, µ = −0.0406
and σ2 = 3.3749. It has to be noted that the estimate of the degrees of freedom and
the mean µ are relative to a larger data set, in particular, for the first 133 observations.
However, the authors conclude that the number of degrees of freedom for the whole data
set is homogeneous and in the range 6.68–8.49. The median of the posterior distribution,
representing our estimate of the parameter value, is 8 degrees of freedom. We can then
conclude that our estimate of ν is in agreement with Lin et al. (2012).

We have analysed the data by adopting a prior different from ours. In addition to
the independence Jeffreys’ prior and the Jeffreys-rule prior proposed by Fonseca et al.
(2008), we have considered the non-hierarchical prior proposed by Juárez and Steel
(2010) in (3). The resulting posterior statistics are summarised in Table 7. We see
that both the independence Jeffreys’ and the Jeffreys-rule prior give estimation results
that do not differ from ours, considering that our prior assumes ν discrete whilst both
Jeffreys’ do not. However, the credible interval of the Jeffreys-rule prior is larger than
the one obtained with our prior and independence Jeffreys’. For the Dow Jones index
data analysed here, the posterior median of ν obtained by applying the gamma prior
proposed by Juárez and Steel (2010) is in contrast with our results.
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Figure 9: Posterior samples (top), progressive median (middle) and posterior histogram
(bottom) for the parameter ν.

6 Discussion

The adoption of t distributed models is an important area of application in finance.
This can either be the application of t-distributed random variable to model a certain
quantity, such as financial returns, or the assumption that the errors of a linear regression
model should have heavier tails than the ones of the more commonly adopted normal
distribution. While objective priors for continuous parameters, such as the mean or
the variance, can be obtained with several popular approaches, the estimation of the
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Prior Median C.I. (95%)
πI(ν) 7.30 (3.80, 25.44)
πJ(ν) 8.63 (3.46, 31.98)
π1(ν) 15.32 (4.90, 28.89)

Table 7: Posterior statistics obtained by using the independence Jeffreys’ prior (πI(ν)),
the Jeffreys-rule prior (πJ(ν)) and the non-hierarchical gamma prior proposed by Juárez
and Steel (2010) (π1(ν)).

number of degrees of freedom of a t distribution is not so straightforward.

The contribution of this paper is threefold. It introduces a new approach to define
objective priors based, not on probabilities, but on loss functions, via the worth of a
particular parameter value being included in the model. The second contribution is
that this approach can be consistently applied to any discrete parameter space and
does not require any parameter manipulation to be effective. In particular, we have
applied it (Villa and Walker 2013) to the discrete scenarios discussed in Berger et al.
(2012). The last important result is that an objective prior on the number of degrees
of freedom of a t distribution has to be truncated. This is a consequence of the fact
that the t distribution converges, in distribution, to the normal distribution. Therefore,
for a sufficiently large number of degrees of freedom, the model can be considered as
normal and it represents the last element in the set of the option models. We have
performed simulations for different truncation points of the prior distribution, namely
for νmax = 60 and νmax = 90. The mean squared error increases when the truncation
point increases. This is due to the fact that the uncertainty about the parameter value
becomes larger and larger. However, estimates are not affected for ν = 1, . . . , 20, in
terms of frequentist coverage of credible intervals. We would also add that taking the
truncation point up to 60 implies an interest in discriminating between a t45 and a t50,
for example. This is not practical or desirable.

As mentioned above, our objective approach can be applied to any discrete parameter
space. Therefore, it seems appropriate to briefly discuss the main differences between our
approach and the one proposed in Berger et al. (2012). We have seen that our approach
depends only on the choice of the model. Once this has been selected, the objective
prior on the discrete parameter space is obtained by minimising the Kullback–Leibler
divergence from the model defined by each element in the parameter space. In Villa
and Walker (2013) we have demonstrated our approach on the five models considered
in Berger et al. (2012): a population size model, the univariate and the multivariate
hypergeometric models, the binomial-beta model and the binomial model. The essence
of the Berger et al. (2012) approach is to embed the discrete model into a continuous
one such that the structure is preserved. Then, reference analysis is applied to the
continuous model. The authors identify four different embedding methods, as it had
not been possible to identify one method that can be applied to all the five considered
models. This obviously differs from our approach. Furthermore, Berger et al. (2012)
may obtain more than one prior per model, and further analysis is required to choose
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the most convenient prior distribution. We believe that the innovation of our approach
is mainly in this aspect, as the methods to choose between priors add subjectivity to
the whole process.

The efficiency of the designed prior for the number of degrees of freedom of a t dis-
tribution has been demonstrated through two simulations. The first one is based on
data simulated from a t density with given parameter values, and the second from data
simulated from a given regression model. We have also performed an analysis on real
data: the daily returns of the closing Dow Jones index over a period of 98 days.

It is worth mentioning that we are currently working on applying the proposed objective
approach to continuous parameter spaces. The criterion in assigning a mass to a pa-
rameter value on the basis of its worth, represented by the Kullback–Leibler divergence
to the nearest model, is still valid, as the following result in Blyth (1994) supports:

lim
δ→0

1

δ2
DKL(f(x|θ)‖f(x|θ + δ)) =

∑
i,j

Ii,j(θ),

where Ii,j(θ) is the (i, j)-th element of the Fisher information matrix. In Brown and
Walker (2012) it has been shown that the approach, in the continuous case, may yield
Jeffreys’ prior.
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