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An Objective Bayesian Criterion to Determine Model Prior

Probabilities

CRISTIANO VILLA and STEPHEN WALKER

School of Mathematics, Statistics and Actuarial Science, University of Kent

Division of Statistics and Scientific Computation, University of Texas at Austin

Abstract

We discuss the problem of selecting among alternative parametric models within the Bayesian

framework. For model selection problems which involve non-nested models, the common ob-

jective choice of a prior on the model space is the uniform distribution. The same applies to

situations where the models are nested. It is our contention that assigning equal prior probabil-

ity to each model is over simplistic. Consequently, we introduce a novel approach to objectively

determine model prior probabilities conditionally on the choice of priors for the parameters

of the models. The idea is based on the notion of the worth of having each model within

the selection process. At the heart of the procedure is the measure of this worth using the

Kullback–Leibler divergence between densities from different models.

Some key words: Bayesian model selection, Kullback–Leibler divergence, objective Bayes, self-

information loss

1 Introduction and Background

This paper introduces a novel approach to objectively determine model prior probabilities for

model selection problems. We focus on the case where the model is the pair M = {f(x|θ), π(θ)},
where f(x|θ) is the probability distribution, characterised by the parameter θ (possibly, a vector

of parameters), and π(θ) is the prior distribution representing beliefs on the model parameter. We

assume these have been specified, so our objectivity is for the model priors only. Furthermore, our

approach can deal with either non-nested or nested models.

Suppose we want to compare k models for observed data x = (x1, . . . , xn). The models are

denoted by

Mj = {fj(x|θj), πj(θj)} , j = 1, . . . , k.

1



Objective Bayesian model prior 2

The usual way to perform the comparison is to compute pairwise Bayes factors between models in

the model space {M1, . . . ,Mk}; for example, Berger & Pericchi (2001), Robert (2001) and Pericchi

(2005) and the references therein. In general, the Bayes factor between model Mj and model Mi

is given by

Bji =
mj(x)

mi(x)
=

∫

fj(x|θj)πj(θj) dθj
∫

fi(x|θi)πi(θi) dθi
, i 6= j ∈ {1, . . . , k} ,

where mj(x) and mi(x) are the marginal densities of x under, respectively, model Mj and model

Mi. We see that the Bayes factor Bji is a weighted likelihood ratio (for the observed data) of

Mj over Mi, where the weights are represented by the prior probabilities πj(θj) and πi(θi). Then,

given model prior probabilities, P (Mj), j = 1, . . . , k, the posterior mass for each element in the

model space, given the data x, is given by

P (Mj |x) =





k
∑

j=1

P (Mj)

P (Mi)
Bji





−1

,

which can be used, for example, to select the model with the highest posterior probability. Alter-

natively, the weights can be used in a model averaging procedure. Berger & Pericchi (2001) and

Chipman et al. (2001), for example.

There are other methods which allow for model selection; such as intrinsic Bayes factors (Casella

& Moreno, 2006) and fractional Bayes factors (Carvalho & Scott, 2009; O’Hagan, 1995). A review

of these approaches and others can be found, for example, in Pericchi (2005). Other noteworthy

publications include Berger & Pericchi (2001), Chipman et al. (2001), Pérez & Berger (2002),

Stracham & van Dijk (2003) and Bayarri et al. (2012), which defines a set of criteria that an

objective prior for model parameter should satisfy.

As the scope of the paper is limited to model priors, we will not discuss further methods for

model choice or for parameter-specific priors, referring to the specific literature on the subjects.

When it comes to defining priors for models, the literature is somewhat sparse. It appears that

the common objective choice for a prior on the space of models is the uniform; i.e. P (Mj) = 1/k,

for j = 1, . . . , k. As in, for example, Berger & Pericchi (2001) or Robert (2001). In other words,

the objective approach assigns equal importance to each model in the set of all the possible models.

Whilst the uniform prior is regarded as the common objective choice for non-nested models, for

nested model selection problems, such as regression models or graphical models, Scott & Berger

(2010) have proposed a different model prior. The aim of this prior is to correct for multiplicity in

variable selection problems, and it assigns the highest probability to the extreme models (i.e. the

null model and the full model).
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On the other hand, we propose a novel objective method to assign prior mass to each model

on the basis of the worth that it has, with respect to the other models in the model space. In

fact, we believe that the assignment of equal importance to each model, as a result of objective

thinking, is too simplistic, and that models do not necessarily have the same worth in relation to

each other. This approach is a generalisation of the idea proposed to define objective priors on

discrete parameter spaces (Villa & Walker, 2014a,b).

The outline of the paper is as follows. In Section 2 we discuss our idea and introduce the notation

that is used throughout the paper. Section 3 is dedicated to non-nested models. In particular,

we illustrate the case of selecting between two models for discrete data with one parameter, and

selecting between two and three multiparameter continuous models. In Section 4 we study model

selection when there are nested models in the scenario, including an illustration where there are,

simultaneously, nested and non-nested models. Section 5 contains a brief discussion.

2 The idea

We introduce our idea to assign prior mass to models by means of the following illustration.

Let us consider three trivial models Mj = {fj(x|θj), πj(θj)}, for j = 1, 2, 3. Here, each model

represents a single density. We also assume that models M1 and M2 (and so, densities f1 and f2)

are very similar, and that the third model M3 (density f3) is significantly different from the other

two. We do not question the rational behind this scenario set up, we just assume that there is one.

By analysing this scenario in the light of the utility of each model we note that the worth of

models M1 or M2 is less than the one of model M3. In fact, should we lose either M1 or M2, we

would still have the remaining one to “represent” that position in the set of all possible models.

On the other hand, M3 would be more valuable, as its removal from the set of choices would lead

to bad inference if it turned out to be the true model.

Having identified this approach to assign the mass to each model on the basis of worth, we

see it takes into consideration the “position” of each model with respect to the others. The

quantification of the worth comes from a result in Berk (1966) which says that, if the model is

misspecified, the posterior distribution asymptotically tends to accumulate at the nearest model

in terms of the Kullback–Leibler divergence (Kullback & Leibler, 1951). Therefore, if we were to

remove model Mj from the set of possible models, and it is the true one, the loss we would incur

is given by the Kullback–Leibler divergence from it to the nearest of {fi}, i 6= j. And because

the nearest model is determined by the choice of the possible models only, the objectivity of the

approach emerges. Thus, by defining the Kullback–Leibler divergence between Mj and Mi by

DKL(fj‖fi) =
∫

fj log(fj/fi), the loss associated with model Mj would be
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l(Mj) = lj = −min
j 6=i

DKL(fj‖fi). (1)

That is, the larger the value of minj 6=iDKL(fj‖fi) the greater the utility (or, equivalently, the

smaller the loss) of keeping the model.

If we consider the mass to be put on each model P (Mj), this can be linked to the worth of

the model via the self-information loss function. The self-information loss function (also known

as the log-loss function in machine learning) measures the performance of a probability statement

with respect to an outcome. Thus, for every probability assignment P = {P (A), A ∈ Ω}, the
self-information loss function is defined as

l(P,A) = − logP (A).

More details and properties of this particular loss function can be found, for example, in Merhav

& Feder (1998). Therefore, for each model Mj we have a measure of the information loss related to

its worth, given by (1), and related to the self-information, given by − logP (Mj). We then equate

the two losses, yielding

− logP (Mj) = −min
j 6=i

DKL(fj‖fi),

equivalently

P (Mj) ∝ exp

{

min
j 6=i

DKL(fj‖fi)
}

. (2)

In other words, the mass that we assign to each model is proportional to the exponential of the

Kullback–Leibler divergence between the model and the nearest one in the set of options.

We can now take the basis of the idea to proper models, that is in a full model selection scenario.

Let us assume that we have to select only between two models

M1 = {f1(x|θ1), π1(θ1)} and M2 = {f2(x|θ2), π2(θ2)} ,

where we assume that the prior of the parameter θ1 ∈ Θ1, π1(θ1), and the prior on the parameter

θ2 ∈ Θ2, π(θ2), are known and proper. Following the criterion illustrated above, the prior mass on

M1, P (M1), is determined on the basis of what is lost if model M1 is removed, and it is the true one.

To elaborate, by applying Berk’s result, if model M1 is removed and θ1 is the true parameter value,

the posterior asymptotically accumulates on the density in M2 which minimises the Kullback–

Leibler divergence from f1(·|θ1). So the utility is given by infθ2 DKL(f1(·|θ1)‖f2(·|θ2)); but since

θ1 is unknown, we evaluate the expected utility as
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∫

Θ1

inf
θ2

DKL(f1(·|θ1)‖f2(·|θ2))π1(θ1) dθ1.

In other words, we associate a worth to the whole model M1 which is the expectation of the worth

weighted by the prior we chose to put on the parameter, that is π1(θ1). Thus, by considering (2),

P (M1) is proportional to the exponential of the expected minimum loss between the models, and

so

P (M1) ∝ exp

{
∫

Θ1

inf
θ2

DKL

(

f1(x|θ1)‖f2(x|θ2)
)

π1(θ1) dθ1

}

. (3)

Similarly, the mass associated to M2, P (M2), is proportional to the exponential of the expected

minimum loss between model M2 and model M1, given by

P (M2) ∝ exp

{
∫

Θ2

inf
θ1

DKL

(

f2(x|θ2)‖f1(x|θ1)
)

π2(θ2) dθ2

}

. (4)

An important and fundamental aspect of our approach is that the prior probability assigned

to a model, P (Mj), depends on the prior assigned to the parameter of the model, πj(θj). Section

4 gives a rational for this aspect in a clear setting: in particular, the so-called Jeffreys-Lindley

paradox (Lindley, 1957).

The most general scenario is represented by a model space of k elements, where each model is

specified by a vector of parameters of finite dimension. Let us consider a model selection problem

with model space {M1, . . . ,Mk}, with Mj = {fj(x|θj), πj(θj)}, j = 1, . . . , k. A compact notation

for the prior mass for model Mj is then given by

P (Mj) ∝ exp

[

Eπj

{

inf
θm,m 6=j

DKL

(

fj(x|θj)‖fm(x|θm)
)

}]

, for j = 1, . . . , k,

where the expectation is taken with respect to the prior assigned to the parameters of model fj ,

that is πj(θj). In other words, the prior assigned to model Mj can be seen as if it is obtained by

measuring the divergence between fj(x|θj) and any other model, and selecting the smaller one.

In the following sections we discuss some illustrations for the non-nested and the nested model

selection case. To simplify the notation, unless otherwise specified, the numbering of the various

models (including the probability and prior distribution that form them) starts afresh in each

illustration.

3 Non-nested models

In this section we examine the objective approach that we are proposing in the paper and, in

particular, to scenarios where the elements of the model space are non-nested. In the first illustra-
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tion we compare two discrete models; a Poisson and a geometric probability mass function. Then,

we consider a model selection problem with two multiparameter continuous densities: Weibull

and log-normal. Finally, in the third illustration, we extend the latter problem to a three model

selection problem by adding a gamma density.

3.1 Poisson and Geometric

Let us assume that we have observed a set of observations x from a phenomenon we know to have

support X = {0, 1, 2, . . .}. The two models are given by

M1 =
{

f1(x|θ) = θxe−θ/x! , π1(θ)
}

and M2 = {f2(x|φ) = φ(1− φ)x, π2(φ)} ,

that is, M1 is a Poisson distribution with rate parameter θ ∈ (0,+∞), and M2 is a geometric

distribution with probability of success φ ∈ (0, 1).

Following the objective approach we have outlined in Section 2, we first consider the mass to

be assigned to model M1. This mass depends on what we lose if we remove model M1, which in

the two model case implies choosing M2, and it is the true one. By applying (3) we have

P (M1) ∝ exp

{
∫

inf
φ

DKL

(

f1(x|θ)‖f2(x|φ)
)

π1(θ) dθ

}

. (5)

To determine the mass in (5), we first find the Kullback–Leibler divergence between a Poisson dis-

tribution with parameter θ and a geometric distribution with parameter φ. As shown by Theorem

1 in the supporting information, this is given by

DKL(f1(x|θ)‖f2(x|φ)) =
∞
∑

x=0

[

θx

x!
e−θ log

{

e−θθx/x!

φ(1− φ)x

}]

= θ log θ −
∞
∑

x=0

(

log x!
θx

x!
e−θ

)

− θ − log φ− θ log(1− φ). (6)

The divergence (6) is minimised, with respect to φ, by φ = 1/(1 + θ). By replacing this result

into (6), we obtain the minimum Kullback–Leibler divergence between a Poisson and a geometric

distributions,

inf
φ

DKL(f1(x|θ)‖f2(x|φ)) = −θ + θ log(1 + θ) + log(1 + θ)−
∞
∑

x=0

(

log x!
θx

x!
e−θ

)

.

For this illustration, we have considered a gamma prior on the parameter θ, with shape and scale

parameter both equal to one; that is, π1(θ) ∼ Ga(1, 1) = exp(−θ). Therefore
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P (M1) ∝ exp

{
∫

inf
φ

DKL

(

f1(x|θ)‖f2(x|φ)
)

e−θdθ

}

= exp(0.09)

= 1.09. (7)

The result in (7) is obviously affected by the choice of the prior. In particular, we note that if

the variance of π1(θ) increases, corresponding on an increase of uncertainty about the true value

of the parameter, the mass assigned to model M1 increases. For example, if we chose the prior to

be π1(θ) ∼ Ga(10, 1) (corresponding to a variance of 10), the corresponding mass on M1 would be

P (M1) ∝ 2.16. Similarly, if the variance decreases, therefore the uncertainty about the parameter

is more limited, the approach will assign a lower mass. For example, for π1(θ) ∼ Ga(1, 5) (variance

equal to 0.04), we have P (M1) ∝ 1.01. Intuitively, if we have a relatively high uncertainty about

the true value of the parameter, the loss (in expectation) we would incur in choosing the wrong

model would be relatively large. Hence, the model assumes more importance in the overall scenario.

Vice versa, if our prior knowledge about the true value of the parameter is relatively precise (i.e.

low uncertainty), the loss of information in choosing the wrong model would be (in expectation)

relatively low.

With a similar procedure, by applying (4) we obtain the mass for model M2. In fact, the

Kullback–Leibler divergence between a geometric distribution and a Poisson distribution is given

by

DKL(f2(x|φ)‖f1(x|θ)) =
∞
∑

x=0

[

φ(1− φ)x log

{

φ(1− φ)x

e−θθx/x!

}]

= log φ+
1− φ

φ
log(1− φ)− 1− φ

φ
log θ + θ

+

∞
∑

x=0

{

φ(1− φ)x log x!
}

, (8)

which is minimised by θ = (1 − φ)/φ (refer to Theorem 1 in the supporting information). We

replace this result in (8), and obtain

inf
θ
DKL(f2(x|φ)‖f1(x|θ)) = log φ+

1− φ

φ
log φ+

1− φ

φ
+

∞
∑

x=0

{

φ(1− φ)x log x!
}

.

The prior for parameter φ has been selected to be a beta distribution with both shape parameter

values equal to two. That is, π2(φ) ∼ Be(2, 2) ∝ φ(1− φ). Thus, the mass to be put on model M2
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is determined to be

P (M2) ∝ exp

{
∫

inf
θ
DKL

(

f2(x|φ)‖f1(x|θ)
)

φ(1− φ) dφ

}

= exp(0.47)

= 1.60. (9)

Also in the computation of P (M2) we have noted, as expected, that the prior mass assigned to

the model depends on the variance of the prior distribution for φ. In particular, similarly to the

computation of P (M1), the larger the variance the more the mass, and vice versa.

Results in (7) and (9) can be normalised. The resulting prior distribution for this model selec-

tion problem (i.e. given the chosen models and the prior distributions of the respective parameters),

is PN (M1) = 0.41 and PN (M2) = 0.59. It is not possible to perform a comparison between the

variances of the two prior distributions, π1(θ) and π2(φ). However, it is plausible to assume that

there is always the possibility to chose them in a way that the prior masses on the models are

equal. In fact, if we consider as prior distribution for θ a gamma with shape parameter 5 and rate

parameter 1, and as prior for φ a beta with both parameters equal to two, we obtain P (M1) ∝ 1.59

and P (M2) ∝ 1.60. Normalising, we have the uniform prior of the models given by PN (M1) = 0.50

and PN (M2) = 0.50. Under these circumstances, we can assume that the level of uncertainty about

θ and φ is virtually the same.

It is also interesting to examine what happens when the uncertainty about the parameter

value of one model is much larger than the uncertainty on the parameter of the other model. For

example, let us keep the prior on φ fixed, that is π2(φ) ∼ Be(2, 2), and set π1(θ) ∼ Ga(20, 1/2).

In this case, the variance of π1(θ) is equal to 80, which is a much larger value than the case where

π1(θ) ∼ Ga(1, 1). Thus, we have that P (M1) ∝ exp(1.43) = 4.17. Normalising, PN (M1) = 0.72

and PN (M2) = 0.28.

3.2 Weibull and Log-normal

In this illustration we consider a scenario where the quantity of interest x has a continuous support

X = (0,+∞). We also show how the approach can be applied to models with dimension of the

parameter space larger than one. We consider model M1 to be a Weibull density with scale param-

eter λ > 0 and shape parameter κ > 0. Model M2 is a log-normal density with location parameter

µ ∈ R (in the log-scale), and shape parameter σ2. These distributions are often considered as op-

tion to model data, for example, in survival analysis studies (Klein & Moeschberger, 1997). Note

that we will consider the parametrisation expressed with the precision parameter τ = 1/σ2 > 0.

Therefore
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M1 =

{

f1(x|λ, κ) =
κ

λ

(x

λ

)κ−1

exp

{

−
(x

λ

)k
}

, π1(λ, κ)

}

,

M2 =

{

f2(x|µ, τ) =
1

x

( τ

2π

)1/2
exp

{

−1

2
τ(log x− µ)2

}

, π2(µ, τ)

}

.

On the basis of our approach, the prior mass to be assigned to model M1 and model M2 is

determined, respectively, by

P (M1) ∝ exp

{
∫ ∫

inf
µ,τ

DKL

(

f1(x|λ, κ)‖f2(x|µ, τ)
)

π1(λ, κ) dκdλ

}

, (10)

and

P (M2) ∝ exp

{
∫ ∫

inf
λ,κ

DKL

(

f2(x|µ, τ)‖f1(x|λ, κ)
)

π2(µ, τ) dµdτ

}

. (11)

Recall that the expression in the exponential in (10) represents the expected loss we would incur

in choosing model M2 when model M1 is the true one. Similarly, the expression at the exponential

in (11) represents the expected loss should we chose model M1 when M2 is the true model.

To compute the mass for model M1, we first obtain the Kullback–Leibler divergence between

a Weibull density and a log-normal density, as shown in Theorem 2 in the supporting information.

DKL(f1(x|λ, κ)‖f2(x|µ, τ)) =

∫ ∞

0

f1(x|λ, κ) log
{

f1(x|λ, κ)
f2(x|µ, τ)

}

dx

= log κ+ κE1(log x)− κ log λ− 1

λκ
E1(x

κ)− 1

2
log τ +

1

2
log(2π)

+
1

2
τ E1(log

2 x)− τµE1(log x) +
1

2
τµ2, (12)

where the expectations are with respect to f1(x|λ, κ), with E1(log x) = log λ− γ/κ (γ ≈ 0.5772 is

the Euler’s constant), E1(x
κ) = λκ, and E1(log

2 x) = π2/(6κ2) + (log λ − γ/κ)2 (π2/(6κ2) is the

variance of the logarithm of x, that is V ar(log x) = π2/(6κ2)). The infimum of the divergence

in (12), with respect to parameters µ and τ , is attained at µ = E1(log x) = log λ − γ/κ and

τ = 1/V ar(log x) = 6κ2/π2. Recalling that, if random variable x is log-normally distributed with

parameters µ and τ , then random variable y = log x has a normal distribution with mean µ and

precision τ , we see that the minimum divergence between a Weibull and a log-normal is attained

when, in the log scale, both densities have the same mean and variance. And this is a sensible

result. Thus, by replacing the expressions of the expectations of the functions of x into equation

(12), we have
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inf
µ,τ

DKL(f1(x|λ, κ)‖f2(x|µ, τ)) = log κ+ κE1(log x)− κ log λ− 1

λκ
E1(x

κ)

+
1

2
log {V ar(log x)}+ 1

2
log(2π) +

1

2

=
1

2
log(2π) + log π − γ − 1

2
log 6− 1

2
.

We note that the minimum divergence, with respect to µ and τ , from a Weibull density to a log-

normal density, does not depend on the values of parameters λ and κ, and it has value 0.09. An

important aspect of this result is that the mass to be assigned to model M1 does not depend on

the choice of the priors for λ and κ. By applying (10), the prior mass for the Weibull density is

P (M1) ∝ exp(0.09) = 1.09.

With an analogous approach, we compute the value of P (M2). The Kullback–Leibler divergence

from a log-normal density with parameters µ and τ , and a Weibull density with parameters λ and

κ (refer to Theorem 2 in the supporting information) is given by

DKL(f2(x|µ, τ)‖f1(x|λ, κ)) =

∫ ∞

0

f2(x|µ, τ) log
{

f2(x|µ, τ)
f1(x|λ, κ)

}

dx

=
1

2
log τ − 1

2
log(2π)− 1

2
τ E2(log

2 x) + τµE2(log x)−
1

2
τµ2

− log κ− κE2(log x) + κ log λ+
1

λκ
E2(x

κ), (13)

where in this case the expectations are with respect to the log-normal density. In particular,

E2(log x) = µ, E2(x
κ) = exp

{

κ2/(2τ) + µκ
}

and E2(log
2 x) = 1/τ + µ2. The divergence in (13)

has infimum for λ = exp {1/(2√τ) + µ} and κ =
√
τ , giving

inf
λ,κ

DKL(f2(x|µ, τ)‖f1(x|λ, κ)) =
1

2
log τ − 1

2
log(2π)− 1

2
τ

(

1

τ
+ µ2

)

+ τµ2 − 1

2
τµ2 − 1

2
log τ

−
√
τµ+

√
τ

(

1

2
√
τ
+ µ

)

+ 1

= 1− 1

2
log(2π).

Again, we note that the minimum divergence between the models is a constant, and its value is of

0.08. As such, the choice of π2(µ, τ) does not have impact on the prior mass that, in accordance to

our approach, is assigned to model M2. We then compute this mass as P (M2) ∝ exp(0.08) = 1.08.

By normalising, we have that PN (M1) = 0.50 and PN (M2) = 0.50, which is uniform and, in
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this case, traces back to the common objective approach to assign equal prior probability to two

models.

The result deriving from Theorem 2 is easy to derive and it is discussed, for example, in

Dumonceaux et al. (1973) and Dumonceaux & Antle (1972). In essence, if we consider two models

with location and scale parameters, say Ma and Mb, the minimum Kullback–Leibler divergence

between Ma and Mb, DKL(Ma‖Mb), does not depend on the parameters of the model Mb. Vice

versa, DKL(Mb‖Ma) has an infimum which does not depend on the parameters of model Ma. In

the light of our approach, this means that the choice of the prior distribution for the parameters

has no influence on the value of prior mass assigned to each model. Furthermore, for the Weibull

and log-normal models, the Kullback–Leibler divergences are very similar, resulting in a prior mass

that is basically uniform.

3.3 Weibull, Log-normal and Gamma

The approach we propose, as discussed in Section 2, can be applied to model spaces with a number

of elements as large as necessary. To illustrate this, we consider the case where, in addition to the

two models introduced in Section 3.2, we add a third one. In particular, a gamma distribution

with shape parameter α > 0 and rate parameter β > 0. This distribution as well, is considered as

an option to model survival analysis data (Klein & Moeschberger, 1997). The model space is then

formed by the following three models

M1 =

{

f1(x|λ, κ) =
κ

λ

(x

λ

)κ−1

exp

{

−
(x

λ

)k
}

, π1(λ, κ)

}

,

M2 =

{

f2(x|µ, τ) =
1

x

( τ

2π

)1/2
exp

{

−1

2
τ(log x− µ)2

}

, π2(µ, τ)

}

,

M3 =

{

f3(x|α, β) =
βα

Γ(α)
xα−1 exp(−βx), π3(α, β)

}

.

Given that our approach assigns mass on a model on the basis of what it is lost if the model

is removed from the model space and it is the true model, and that this loss is measured by the

expected Kullback–Leibler divergence between the model and the nearest one, we have to identify,

for each model Mj , j = 1, 2, 3, the model Mi, j 6= i that is nearer.

Let us first consider the Weibull model M1. The logP (M1) is proportional to the minimum

value between

{

Eπ1

[

inf
µ,τ

DKL(f1(x|λ, κ)‖f2(x|µ, τ))
]

, Eπ1

[

inf
α,β

DKL(f1(x|λ, κ)‖f3(x|α, β))
]}

, (14)

where the expectations are taken with respect to the prior π1(λ, κ). From Section 3.2, we know



Objective Bayesian model prior 12

that the value of the first element in (14) is 0.09, as the minimum divergence from a Weibull

density to a log-normal density does not depend on π1(λ, κ). To compute the expected minimum

divergence from model M2 to model M3, we proceed as seen in Section 3.2. First, we determine the

Kullback–Leibler divergence from M1 to M3, as shown in Theorem 3 in the supporting information,

which gives

DKL(f1(x|λ, κ)‖f3(x|α, β)) =

∫ ∞

0

f1(x|λ, κ) log
{

f1(x|λ, κ)
f3(x|α, β)

}

dx

= log κ+ κE1(log x)− κ log λ− 1

λκ
E1(x

κ)− α log β + log Γ(α)

−αE1(log x) + β E1(x). (15)

Where, again, the expectations are taken with respect to model f1(x|λ, κ). The infimum of (15),

with respect to the parameter α and β of the gamma density, is found by solving the following

system of equations







E1(log x) = Ψ(α)− log β

E1(x) = α/β,
(16)

from which we see that the two densities are nearer when they have equal expectation for x and

log x (refer to Theorem 3 in the supporting information). In fact, if a random variable has a

gamma distribution with shape parameter α and rate parameter β, its expectation is α/β and

the expectation of its logarithm is Ψ(α) − log β; where Ψ(α) = d {log Γ(α)} /dα is the digamma

function. System (16) is solved with numerical methods, and the minimum divergence between a

Weibull and a gamma has the form

inf
α,β

DKL(f1(x|λ, κ)‖f3(x|α, β)) = log κ− γ − 1− α log β + log Γ(α)− α log λ+ α
γ

κ

+βλΓ

(

1 +
1

κ

)

,

where we have considered that, if x has a Weibull distribution with parameters λ and κ, then

E1(x) = Γ(1/κ)λ/κ. In this illustration we assume that the parameters of the Weibull are in-

dependent. Therefore, the prior π1(λ, κ) is the product of the marginal prior assigned on each

parameter, which have been chosen to be identical and, in particular, gamma distributed with

shape parameter equal to 25 and rate parameter equal to 1. That is, distributions with relatively

large variance. With this prior, we have obtained Eπ1
{infα,β DKL(f1(x|λ, κ)‖f3(x|α, β))} = 0.05.

Thus, given that this result gives a smaller expected divergence in comparison to the one mea-
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sure to the log-normal (as computed in Section 3.2), the mass to be assigned to model M1 is

P (M1) ∝ exp(0.05) = 1.06.

It is legitimate to wonder if it is possible, by selecting a different prior π1(λ, κ), to define a

Weibull density which is nearer to the log-normal than to the gamma. For example, if we chose

the gamma distributions for λ and κ with the rate parameter equal to 2, the expected minimum

divergence would have value 0.14, and the prior mass for M1 would be based on the expected

minimum divergence with respect to the log-normal density.

To determine the prior probability for model M2, we need to identify the minimum between

{

Eπ2

[

inf
λ,κ

DKL(f2(x|µ, τ)‖f1(x|λ, κ))
]

, Eπ2

[

inf
α,β

DKL(f2(x|µ, τ)‖f3(x|α, β))
]}

.

Where, in this case, the expectations are taken with respect to the prior π2(µ, τ). In Section 3.2

we have shown that the first term does not depend on the parameters of the log-normal ad has

value 0.08. The Kullback–Leibler divergence between M2 and M3 is (refer to Theorem 4 in the

supporting information)

DKL(f2(x|µ, τ)‖f3(x|α, β)) =

∫ ∞

0

f2(x|µ, τ) log
{

f2(x|µ, τ)
f3(x|α, β)

}

dx

=
1

2
log τ − 1

2
log(2π)− 1

2
τ E2(log

2 x) + τµE2(log x)−
1

2
τµ2

−α log β + log Γ(α)− αE2(log x) + β E2(x). (17)

In this case, the expectations are with respect to model f2(x|µ, τ). The minimum of (17), with

respect to α and β, is attained when simultaneously E2(x) = α/β and E2(log x) = Ψ(α) − log β.

That is, when the two densities have equal mean and equal expectation of the logarithm of x.

Note that this result is analogous to the one obtained when we have determined the minimum

divergence from M1 to M3. To compute the expected minimum Kullback–Leibler divergence

between the log-normal density and the gamma density, for coherence, we have again assumed the

parameters as independent. Therefore, π2(µ, τ) is given by the product of the two marginals. For

the location parameter we have set a log-normal prior with location parameter zero and precision

1/10, and for the parameter τ , the prior is a gamma with parameters 25 and 1. We have obtained

E {infα,β DKL(f2(x|µ, τ)‖f3(x|α, β))} = 0.06. With this prior, the mass for modelM2 is determined

on the basis of its distance to the gamma density, and it is P (M2) ∝ exp(0.06) = 1.06.

We note that, by increasing the uncertainty around the parameters, this mass increases as well.

For example, by setting the rate parameter of the prior for τ to 1/4, we would have an expected

minimum divergence of 0.09. In this case, the prior probability for the log-normal would be based

on the distance with respect to the Weibull.



Objective Bayesian model prior 14

For the prior probability of model M3, we need to compare

{

Eπ3

[

inf
λ,κ

DKL(f3(x|α, β)‖f1(x|λ, κ))
]

, Eπ3

[

inf
µ,τ

DKL(f3(x|α, β)‖f2(x|µ, τ))
]}

.

Obviously, the expectation are now taken with respect to the prior for the parameters of model

f3(x|α, β). First, we see that the divergence from model M3 to model M1 is given by

DKL(f3(x|α, β)‖f1(x|λ, κ)) =

∫ ∞

0

f3(x|α, β) log
{

f3(x|α, β)
f1(x|λ, κ)

}

dx

= α log β − log Γ(α) + αE3(log x)− β E3(x)− log κ− κE3(log x)

+κ log λ+
1

λκ
E3(x

κ), (18)

where the expectations are with respect to model f3(x|α, β), with E3(x) = α/β, E3(log x) =

Ψ(α)− log β and E3(x
κ) = β−κΓ(κ+α)/Γ(α) (refer to Theorem 2 in the supporting information).

The infimum of (18), with respect to λ and κ, is found by solving







E3(x
κ) = λκ

Ψ(κ+ α)− 1/κ = Ψ(α).
(19)

Solving system (19), with numerical methods, the minimum Kullback–Leibler divergence between

the gamma density and the Weibull density has the following expression

inf
λ,κ

DKL(f3(x|α, β)‖f1(x|λ, κ)) = − log Γ(α) + αΨ(α)− α− log κ− κΨ(α) + κ log β

+κ log λ+ 1.

Assuming α and β independent, prior π3(α, β) can be set as the product of two gamma distribu-

tions. For coherence with previous decisions, we have chosen both gamma with shape parameter

equal to 25, in order to have relatively high variance, thus relatively high uncertainty about the

parameter values. The expected minimum divergence is Eπ3
{infλ,κDKL(f3(x|α, β)‖f1(x|λ, κ))} =

0.02.

To assess Eπ3
{infµ,τ DKL(f3(x|α, β)‖f2(x|µ, τ))}, we consider the Kullback–Leibler divergence

between the two models (refer to Theorem 4 in the supporting information)
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DKL(f3(x|α, β)‖f2(x|µ, τ)) =

∫ ∞

0

f3(x|α, β) log
{

f3(x|α, β)
f2(x|µ, τ)

}

dx

= α log β − log Γ(α) + αE3(log x)− β E3(x)−
1

2
log τ +

1

2
log(2π)

+
1

2
τ E3(log

2 x)− τµE3(log x) +
1

2
τµ2. (20)

The divergence in (20) is minimised with respect to µ and τ when, simultaneously, µ = E3(log x) =

Ψ(α)− log β and τ = 1/V ar(log x) = 1/Ψ′(α), with Ψ′(α) = d {Ψ(α)} /dα the trigamma function.

We note that the two models are at their nearest distance when expectation and variance (of the

logarithm) are equal. The expression of this minimum divergence is

inf
µ,τ

DKL(f3(x|α, β)‖f2(x|µ, τ)) = − log Γ(α) + αΨ(α)− α+
1

2
logΨ′(α)

+
1

2
log 2π +

1

2
.

We used the same prior we have used to compute the expected minimum divergence between

M3 and M1. The result is Eπ3
{infµ,τ DKL(f3(x|α, β)‖f2(x|µ, τ))} = 0.06. Therefore, the prior

mass for M3 is based on the “distance” from the gamma to the Weibull, and has value P (M3) ∝
exp(0.02) = 1.02. We note that, in this case, the expected minimum divergence depends only on

the value of the shape parameter.

TABLE 1 HERE

Table 1 summarises the expected minimum divergences among models M1, M2 and M3 and, as

previously computed, the appropriate prior mass. The normalised prior for this particular model

selection problem, and given the selected priors for the parameter of the models, are PN (M1) =

0.34, PN (M2) = 0.33 and PN (M3) = 0.33. Even though is not possible to make a direct comparison

among the level of uncertainty that we have expressed for the parameters of each model (via the

appropriate prior distributions), we note that, by keeping variances relatively large, the prior mass

is basically uniform.

4 Nested Models

Let us now consider the case where models are nested. The simplest scenario is when we have

only two models, and where we can identify an inner (or simple) model and an outer (or complex)
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model. Logic dictates that, if we remove the smaller model when it is the true, there would be no

loss, for the inner is a special case of the outer (unless some additional loss is placed on the larger

model simply because it is more complex). Therefore, the prior mass to be assigned to the inner

model will be proportional to one (associated with a loss of zero). The mass for the outer model

will be determined with a procedure analogous to the one we have repeatedly examined in Section

3; that is, by computing the expected minimum Kullback–Leibler divergence with respect to the

inner model. Consider the following example.

Example 1. Let us assume that we want to select between a standard normal density and a

normal density with the same precision but with the mean that is allowed to be different from

zero. That is

M1 =

{

f(x|0, 1) = 1√
2π

exp

(

−1

2
x2

)}

and M2 =

{

f(x|µ, 1) = 1√
2π

exp

[

−1

2
(x− µ)2

]

, π(µ)

}

.

The general expression of the Kullback–Leibler divergence between two normal densities with

different means and precisions, say f(x|µ1, τ1) = N(µ1, τ1) and f(x|µ2, τ2) = N(µ2, τ2), is given by

DKL(f(x|µ1, τ1)‖f(x|µ2, τ2)) =

∫ ∞

−∞

f(x|µ1, τ1) log

{

f(x|µ1, τ1)

f(x|µ2, τ2)

}

dx

=
τ2
2
(µ1 − µ2)

2 +
1

2

(

τ2
τ1

− 1− log
τ2
τ1

)

. (21)

To assign a mass toM1, we have to find the infimum of DKL(f(x|0, 1)‖f(x|µ, 1)) which, considering
(21), is attained for µ = 0, resulting in a divergence equal to zero. As such, P (M1) ∝ 1. For M2,

we note that DKL(f(x|µ, 1)‖f(x|0, 1)) = µ2/2, which is also the minimum, given µ. Therefore, the

minimum expected divergence, with respect to the prior π(µ), is given by

∫

DKL

(

f(x|µ, 1)‖f(x|0, 1)
)

π(µ) dµ =

∫

µ2

2
π(µ) dµ

∝ E(µ2).

Thus, taking E(µ) = 0, we have E(µ2) = V ar(µ). Hence, P (M2) ∝ exp {V ar(µ)}. First, we note

that the mass associated with the simpler model is proportional to one. Second, the mass on the

more complex model is related to the variance of the prior distribution for µ. If V ar(µ) = 0 (i.e.

we put a point mass at µ = 0), we have that P (M1) = P (M2) = 1/2, as it should be. On the other

hand, if V ar(µ) → ∞, P (M2) increases, as we believe more and more that model M1 is wrong.
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In particular, the larger the variance (i.e. the more uncertainty about the parameter we have),

the larger the mass associated to the larger model. Furthermore, our approach allows us to “ex-

plain” the Jeffreys-Lindley paradox, by assigning a model prior that depends on the model, namely

{f(x|µ, 1), π(µ)}. The paradox arises when the posterior of the null model, M1 in our example

above, converges to one when V ar(µ) tends to infinity; therefore, in terms of hypothesis testing,

the point null-hypothesis will always be accepted. According to our approach, the prior on model

M2 is proportional to the variance of µ, which allows to avoid the “paradoxical” inconvenient of

a posterior on M1 that tends to one when the above variance tends to infinity. Robert (1993),

although through a different approach, derives a solution that makes the prior on the models func-

tion of the variance of µ. For other discussions on the paradox refer to, for example, Shafer (1982),

Bernardo (1999), and Dellaportas et al. (2012).

To generalise, let us assume that we have to select between the following two nested models,

M1 = {f(·|θ1), π1(θ1)} and M2 = {f(·|θ1, θ2), π1(θ1)π2(θ2|θ1)} ,

with θ1 ∈ Θ1, θ2 ∈ Θ2, and where the prior distributions for the parameters are known. The fact

that model M1 is nested into model M2, implies that DKL(f(·|θ1)‖f(·|θ1, θ2)) is minimised, with

respect to the pair (θ1, θ2), when θ2 degenerates to a fixed value. As such, P (M1) ∝ 1.

The prior mass to be put on model M2, following our approach, will be found in the following

way. First, if we assume that DKL(f(·|θ1, θ2)‖f(·|θ)) attains its minimum at θ = θ1, we note that

it is not necessary to identify the minimum Kullback–Leibler divergence from model M2 to model

M1, as parameter θ1 would have the same value for both models. Thus, the mass to assign to M2

is given by

P (M2) ∝ exp

{
∫ ∫

DKL(f(·|θ1, θ2)‖f(·|θ1))π2(θ2|θ1)π1(θ1) dθ2dθ1
}

.

This result can be further generalised if we consider a set of models nested one into each other.

In this case, it becomes obvious that the mass assigned to each model, except for the largest one

(i.e. the most complex), will be proportional to one. Furthermore, the only mass that has to be

actually computed is the one to be assigned to the largest model.

From this result, we note that when a model is nested into another one, say M1 is nested in M2,

the prior mass on the simpler model will never be larger than the prior mass on the more complex

model. That is, P (M2) ≥ P (M1). The complex model expresses a more detailed representation of

the phenomenon than the simple model. Therefore, in general, it has to be P (M2) > P (M1), and

we would have P (M2) = P (M1) = 1/2 if and only if M1 and M2 are the same model.
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Let us now see an example on how the general approach is applied to the selection of two nested

models of the same family. This example is a generalisation the previous one.

Example 2. Let us assume that we are interested in selecting between a normal density with

mean µ and precision one, and a normal density with the same mean parameter and precision τ .

The models are

M1 =

{

f(x|µ, 1) = 1√
2π

exp

{

−1

2
(x− µ)2

}

, π1(µ)

}

,

M2 =

{

f(x|µ, τ) =
√

τ

2π
exp

{

−τ

2
(x− µ)2

}

, π2(µ, τ)

}

.

Applying (21), we have that DKL(f(x|µ, 1)‖f(x|µ, τ)) = τ(µ − θ)2/2 + (τ − 1 − log τ)/2, where

the mean in M2 has been rewritten as θ in order to distinguish it from the mean of model M1. By

differentiating with respect to θ and τ , we find that the minimum is attained when θ = µ and τ = 1.

And, as expected, the value of the divergence at these points is zero. Thus, P (M1) ∝ 1. The prior

mass for M2 is based on the divergence DKL(f(x|µ, τ)‖f(x|µ, 1)) = τ(θ−µ)2/2+(1/τ−1+log τ)/2.

We can see that this is minimised, with respect to µ, when the two means are equal, and the value

is infµDKL(f(x|µ, τ)‖f(x|µ, 1)) = (1/τ − 1 + log τ). Therefore, we have

P (M2) ∝ exp

{
∫ ∫

1

2

(

1

τ
− 1 + log τ

)

π2(µ, τ) dµdτ

}

. (22)

Similarly, as seen in Example 1, we note that the further π2 is from a point mass at one, the larger

P (M2) becomes. This is shown by the fact that (1/τ + log τ) in (22) is minimised at τ = 1. And

this expresses the idea that the more uncertain we are about the simpler model being the true one,

the more mass we assign to the more complex model. As an illustration, we consider the prior for

τ to be a gamma distribution with shape parameter 5 and rate parameter 1. We then obtain that

P (M2) ∝ exp(0.38) = 1.46. With this result, the normalised prior mass is PN (M1) = 0.41 and

PN (M2) = 0.59. It is of course possible, by changing the prior π2, to obtain a different prior mass

for M1 and M2.

Again, we note from Example 2 that, when we consider nested models, the worth of the larger

model is, at least, as large as the worth of the inner model.
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4.1 Normal and Student’s t

The first illustration for nested models not belonging to the same family of distributions, considers

a normal density and a Student’s t density. The normal and the Student’s t can be found, for

example, as alternative models in financial applications, such as modelling logarithmic financial

returns (Fabozzi et al., 2010). We then consider model M1 to be a normal distribution with mean µ

and precision τ , and model M2 to be a Student’s t distribution with location parameter θ, precision

parameter λ and parameter ν representing the number of degrees of freedom. That is

M1 =

{

f1(x|µ, τ) =
√

τ

2π
exp

{

−τ

2
(x− µ)2

}

, π1(µ, τ)

}

,

M2 =

{

f2(x|θ, λ, ν) =
Γ
(

ν+1

2

)

Γ
(

ν
2

)

(

λ

νπ

)1/2{

1 +
λ

ν
(x− θ)2

}− ν+1

2

, π2(θ, λ, ν)

}

.

The Student’s t distribution converges to a normal distribution when the number of degrees of

freedom tends to infinity (for example, Chu (1956)). As such, the two models can be considered

nested models which differ from the number of degrees of freedom only (for example, Casellas

et al. (2008)). Therefore, as discussed above, we have that the infimum of the Kullback–Leibler

divergence between M1 and M2 is zero, resulting in a prior mass on the normal model P (M1) ∝ 1.

To determine the mass for M2, following our approach, we consider that, as shown in Theorem

5 in the supporting information, we have

DKL(f2(x|θ, λ, ν)‖f1(x|µ, τ)) =

∫ ∞

−∞

f2(x|θ, λ, ν) log
{

f2(x|θ, λ, ν)
f1(x|µ, τ)

}

dx

= log Γ

(

ν + 1

2

)

− log Γ
(ν

2

)

+
1

2
log λ− 1

2
log ν

−ν + 1

2
E2

{

log

(

1 +
λ

ν
(x− θ)2

)}

− 1

2
log τ +

1

2
log 2

+
1

2
τ E2(x

2)− τµE2(x) +
1

2
τµ2. (23)

The divergence in (23) is minimised, with respect to µ and τ , when µ = E2(x) = θ and τ =

1/V ar(x) = λ. That is, when the two distributions have location parameter and scale parameter

of the same value. The minimum divergence is then
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inf
µ,τ

DKL(f2(x|θ, λ, ν)‖f1(x|µ, τ)) = log Γ

(

ν + 1

2

)

− log Γ
(ν

2

)

− ν + 1

2

E2

{

log

(

1 +
λ

ν
(x− θ)2

)}

+
1

2
log ν − 1

2
log(ν − 2) +

1

2
.

To compute the prior mass for M2, we consider the following prior distribution π2(θ, λ, ν) =

π2,1(ν)π2,2(λ)π2,3(θ|λ). Where π2,1(ν) is an exponential distribution (Geweke, 1993) with rate

parameter equal to 1, π2,2(λ) is a gamma with shape parameter 25 and rate parameter 1, and

π2,3(θ|λ) is a normal distribution with mean zero and precision determined by the prior on λ.

Thus

P (M2) ∝ exp

{
∫ ∫ ∫

inf
µ,τ

DKL

(

f2(x|θ, λ, ν)‖f1(x|µ, τ)
)

π2(θ, λ, nu) dθλdν

}

= exp(0.23)

= 1.26,

where the result has been obtained through numerical methods. By normalising, we have PN (M1) =

0.44 and PN (M2) = 0.56, which shows that more mass is given to the outer model. This is in line

with the idea that, in relation to the other model, M2 has more worth.

4.2 Nested and non-nested models

In this final illustration, we consider a realistic model selection problem where the model space

has both nested and non-nested elements, and a total of four models. We do this by adding an

exponential model to the selection scenario analysed in Section 3.3. That is, M4 is an exponential

density with rate parameter θ

M4 =
{

f4(x|θ) = θe−θx, π4(θ)
}

.

To identify the prior mass for model M1, in addition to the results in Section 3.3, we need

to consider the expected minimum Kullback–Leibler divergence with respect to the exponential

density. This is given by (refer to Theorem 6 in the supporting information)
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DKL(f1(x|λ, κ)‖f4(x|θ)) =

∫ ∞

0

f1(x|λ, κ) log
{

f1(x|λ, κ)
f4(x|θ)

}

dx

= log κ+ κE1(log x)− E1(log x)− κ log λ− 1

λκ
E1(x

κ)− log θ

+θE1(x),

which is minimised for θ = 1/E1(x) = λ−1Γ(1 + 1/κ)−1. As expected, the two densities have min-

imum distance when the respective first moments are equal. Then infθ DKL(f1(x|λ, κ)‖f4(x|θ)) =
log κ−γ+γ/κ+log Γ(1+1/κ). We note that the minimum Kullback–Leibler divergence between the

Weibull and the exponential densities does not depend on the scale parameter λ. To compute the

expected minimum divergence, we have adopted the same prior distributions for the parameter of

the Weibull we have used in Section 3.3. The result is Eπ1
{infθ DKL(f1(x|λ, κ)‖f4(x|θ))} = 0.05.

Given that this is the smallest expected divergence for model M1 (refer to Table 2), we have

P (M1) ∝ (0.05) = 1.06.

With a similar process, we find the Kullback–Leibler divergence between modelM2 (log-normal)

and the model M4 (refer to Theorem 6 in the supporting information)

DKL(f2(x|µ, τ)‖f4(x|θ)) =

∫ ∞

0

f2(x|µ, τ) log
{

f2(x|µ, τ)
f4(x|θ)

}

dx

= −E2(log x) +
1

2
log τ − 1

2
log(2π)− 1

2
τ E2(log

2 x) + τµE2(log x)

−1

2
τµ2 − log θ + θE2(x),

which is minimised for θ = 1/E2(x) = 1/exp{µ+1/(2τ)}, as expected. The minimum divergence is

infθ DKL(f2(x|µ, τ)‖f4(x|θ)) = {log τ − log(2π)+ 1+ τ}/2, which does not depend on the location

parameter µ of the log-normal density. With the same priors for µ and τ considered in Section 3.3,

we have obtained Eπ2
{infθ DKL(f2(x|µ, τ)‖f4(x|θ))} = 0.05. As the smallest expected divergence

for model M2 remains the one with respect to the gamma density (refer to Table 2), we have

P (M2) ∝ exp(0.03) = 1.03.

For the gamma model M3, we have (refer to Theorem 6 in the supporting information)

DKL(f3(x|α, β)‖f4(x|θ)) =

∫ ∞

0

f3(x|α, β) log
{

f3(x|α, β)
f4(x|θ)

}

dx

= α log β − log Γ(α) + αE3(log x)− E3(log x)− β E3(x)− log θ

+θE3(x),
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which is minimised by θ = 1/E3(x) = β/α. Therefore, we obtain the minimum divergence as

infθ DKL(f3(x|α, β)‖f4(x|θ)) = − log Γ(α)+αΨ(α)−Ψ(α)−α+logα+1. The expected minimum

divergence has been computed using the same priors for α and β defined in Section 3.3, obtaining

Eπ3
{infθ DKL(f3(x|α, β)‖f4(x|θ))} = 0.05. In this case as well, the divergence with respect to the

exponential distribution does not constitute the minimum (refer to Table 2), so we have P (M3) ∝
exp(0.02) = 1.02.

To compute the prior mass for model M4, we note that, being the exponential nested into the

Weibull and the gamma models (it is in fact a special case of these two densities), we obviously have

DKL(f4(x|θ)‖f1(x|λ, κ)) = 0 and DKL(f4(x|θ)‖f3(x|α, β)) = 0. Therefore, we can conclude that

P (M4) ∝ 1. However, for completion, we have computed the expected minimum Kullback–Leibler

divergence with respect to the log-normal density, and found Eπ4
{infθ DKL(f4(x|θ)‖f2(x|µ, τ))} =

0.41 (refer to Theorem 7 in the supporting information); where the expectation has been computed

with respect to the priors for µ and τ defined in Section 3.3.

TABLE 2 HERE

Table 2 summarised the results for this particular selection problem. We note that all the

normalised prior probabilities are close to 1/4. Given that we have kept the prior uncertainty

about the parameter of the models at a relatively high level, the result is sensible. However, as we

have already discussed in the previous illustrations, a change in the informational content within

the prior distribution on the parameters will cause, in general, a different prior over the model

space.

Another interesting consideration is that, by inspecting Table 2, we note that the expected

Kullback–Leibler divergence between models M1, M2 and M3 and model M4 is constant and it

is equal to 0.05. Recalling the results in this section, we have that the minimum divergences (in

these three particular cases) depend only on the shape parameter of the models, respectively κ, τ

and α. As we have used identical prior distributions for these parameters, the result obtained is

sensible in the light of the prior information considered.

5 Discussion

The approach we propose aims to assign prior mass on models on the basis of their worth. We

evaluate the worth by thinking about what is lost if we remove a model and it is correct. By doing

this for all models, we obtain an objective value of each of their worth, which is then linked to the

prior mass via the self-information loss function.
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An important aspect of our approach is that the prior on a model depends on the model itself,

in particular on the prior for the parameter of the model. This is evident in Example 1, where we

compare the normal density N(µ, 1) to the normal density N(0, 1). It is well known that assigning

fixed probability to the two models (such as assigning 1/2 to both of them) may result in the so

called Jeffreys-Lindley paradox. Our approach solves the paradox by assigning more mass to the

model N(µ, 1) as the uncertainty on µ increases. Hence, the prior on a model must/should depend

on the prior on the model parameter.

The proposed method to derive model prior masses can be applied to any selection problem.

In fact, we have seen examples with discrete and continuous models; models with one parameter

and models with more than one parameter. Particular results have been obtained in the presence

of nested models: if model M1 is contained in model M2, then P (M2) ≥ P (M1). The result is

not surprising, as the more complex model is (at least) as good as the simpler one, and there is

no loss in removing the simpler model. Unless an additional loss is placed on model M2 for model

complexity/dimension.

Our approach can be applied to a certain specific category of variable selection problems.

Suppose we have a variable of interest y, which outcome depends on potentially p covariates

(x1, . . . , xp). In general, a variable selection problem would consider all the possible regression

models where y is explained by any combination of the p covariates. To assign prior probabilities

on this model space, our approach requires further considerations which are not discussed in this

paper. However, we can consider the case where the optional models are formed by adding to the

context model (i.e. the simplest model) one variable at a time, from x1 to xp, progressively. In

this case, we would be in the presence of p+1 nested models, creating a scenario which is treatable

with our approach.

To elaborate. Suppose that the normal linear model is defined to relate y to the potential

covariates. That is

y ∼ Nn(Xβ, σ2In),

where X is the design matrix, β is the vector of regression parameters, and σ2 the constant error

variance. Thus, the generic model can be represented as Mj =
{

∑j
l=0

βlxlm + εm, π(β0, . . . , βj)
}

,

for j = 0, . . . , p. On the basis of what has been discussed in Section 4, we assign prior mass

proportional to one to each model from M0 to Mp−1. Whilst the mass assigned to model Mp

would be determined by the expected minimum Kullback–Leibler divergence from Mp to Mp−1.

In this and similar contexts, we can add a penalty to the prior on the model space to take into

account model complexity. The idea fits in our framework naturally, and results in the following
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model prior

P (Mj) ∝ exp

{

∫

Θj

[

inf
θm,m 6=j

DKL(fj(·|θj)‖fm(·|θm))πj(θj) dθj

]

− c · |Mj |
}

where c > 0 and |Mj | is the dimension of model Mj . However, we do not discuss this more in the

current paper.
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Table 1: Expected minimum Kullback-Leibler divergence (by column) among the models M1

(Weibull), M2 (log-normal) and M3 (gamma). The divergences have been computed on the basis
of the prior distributions on the parameters of the models as specified in Section 3.3. The mass is
proportional to the exponential of the minimum divergence, and the last two rows show this mass
for each model: non-normalised P (Mj) and normalised PN (Mj), j = 1, 2, 3.

M1 M2 M3

M1 0.08 0.06
M2 0.09 0.02
M3 0.05 0.03

P (Mj) 1.06 1.03 1.02
PN (Mj) 0.34 0.33 0.33

Table 2: Expected minimum Kullback–Leibler divergence (by column) among the models M1

(Weibull), M2 (log-normal), M3 (gamma) and M4 (exponential). The divergences are computed
considering the priors for the parameter of the models as defined in Section 3.3 and Section 4.1.
The prior mass is proportional to the exponential of the minimum divergence, and the last two rows
report this mass for each model, non-normalised P (Mj) and normalised PN (Mj), j = 1, 2, 3, 4.

M1 M2 M3 M4

M1 0.08 0.06 0.00
M2 0.09 0.02 0.41
M3 0.05 0.03 0.00
M4 0.05 0.05 0.05

P (Mj) 1.05 1.03 1.02 1.00
PN (Mj) 0.26 0.25 0.25 0.24


