57 research outputs found
Oscillatory fracture path in thin elastic sheet
We report a novel mode of oscillatory crack propagation when a cutting tip is
driven through a thin brittle polymer film. The phenomenon is so robust that it
can easily be reproduced at hand (using CD packaging material for example).
Careful experiments show that the amplitude and wavelength of the oscillatory
crack path scale lineraly with the width of the cutting tip over a wide range
of lenghtscales but are independant of the width of thje sheet and the cutting
speed. A simple geometric model is presented, which provides a simple but
thorough interpretation of the oscillations.Comment: 6 pages, submitted to Comptes Rendus Academie des Sciences. Movies
available at http://www.lmm.jussieu.fr/platefractur
Oscillatory fracture paths in thin elastic sheets
We report a novel mode of quasi-static oscillatory crack propagation when a cutting tip of moderately large width is driven through a thin brittle polymer film. Experiments show that the amplitude and wavelength of the oscillatory crack paths scale linearly with the width of the cutting tip over a wide range of length scales but are independent of the width of the sheet and of the cutting speed. We propose a mechanism for this instability, based on the coupling between crack propagation and out-of-plane deformations of the film. To cite this article: B. Roman et al., C. R. Mecanique 331 (2003). 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved. Résumé Fissures oscillantes dans les feuilles élastiques minces. Nous présentons une nouvelle instabilité oscillante de fissure qui se produit lorsqu’un indenteur assez large est forcé à travers une feuille mince fragile préalablement entaillée. Nos expériences révèlent que l’amplitude et la longueur d’onde de la fissure dépendent linéairement de largeur de l’indenteur sur une grande gamme de largeurs, et ne dépendent ni de la largeur du film, ni de la vitesse de découpe. Nous proposons un mécanisme pour cette instabilité, fondé sur un couplage entre l’avancée de la fissure et les déformations transverses du film. Pour citer ce
Calibrating and validating the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) urban cooling model: case studies in France and the United States
Understanding the cooling service provided by vegetation in cities is important to inform urban policy and planning. However, the performance of decision-support tools estimating heat mitigation for urban greening strategies has not been evaluated systematically. Here, we further develop a calibration algorithm and evaluate the performance of the urban cooling model developed within the open-source InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) software. The urban cooling model estimates air temperature reduction due to vegetation based on four predictors, shade, evapotranspiration, albedo, and building density, and was designed for data-rich and data-scarce situations. We apply the calibration algorithm and evaluate the model in two case studies (Paris, France, and Minneapolis–St Paul, USA) by examining the spatial correlation between InVEST predictions and reference temperature data at a 1 km horizontal resolution. In both case studies, model performance was high for nighttime air temperatures, which are an important indicator of human wellbeing. After calibration, we found medium performance for surface temperatures during daytime but low performance for daytime air temperatures in both case studies, which may be due to model and data limitations. We illustrate the model adequacy for urban planning by testing its ability to simulate a green infrastructure scenario in the Paris case study. The predicted air temperature change compared well to that of an alternative physics-based model (r2=0.55 and r2=0.85 for daytime and nighttime air temperatures, respectively). Finally, we discuss opportunities and challenges for the use of such parsimonious decision-support tools, highlighting their importance to mainstream ecosystem services information for urban planning.</p
SHANK3 controls maturation of social reward circuits in the VTA.
Haploinsufficiency of SHANK3, encoding the synapse scaffolding protein SHANK3, leads to a highly penetrant form of autism spectrum disorder. How SHANK3 insufficiency affects specific neural circuits and how this is related to specific symptoms remains elusive. Here we used shRNA to model Shank3 insufficiency in the ventral tegmental area of mice. We identified dopamine (DA) and GABA cell-type-specific changes in excitatory synapse transmission that converge to reduce DA neuron activity and generate behavioral deficits, including impaired social preference. Administration of a positive allosteric modulator of the type 1 metabotropic glutamate receptors mGluR1 during the first postnatal week restored DA neuron excitatory synapse transmission and partially rescued the social preference defects, while optogenetic DA neuron stimulation was sufficient to enhance social preference. Collectively, these data reveal the contribution of impaired ventral tegmental area function to social behaviors and identify mGluR1 modulation during postnatal development as a potential treatment strategy
Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU
Cities across the globe recognise their role in climate mitigation and are acting to reduce carbon emissions. Knowing whether cities set ambitious climate and energy targets is critical for determining their contribution towards the global 1.5 °C target, partly because it helps to identify areas where further action is necessary. This paper presents a comparative analysis of the mitigation targets of 327 European cities, as declared in their local climate plans. The sample encompasses over 25% of the EU population and includes cities of all sizes across all Member States, plus the UK. The study analyses whether the type of plan, city size, membership of climate networks, and its regional location are associated with different levels of mitigation ambition. Results reveal that 78% of the cities have a GHG emissions reduction target. However, with an average target of 47%, European cities are not on track to reach the Paris Agreement: they need to roughly double their ambitions and efforts. Some cities are ambitious, e.g. 25% of our sample (81) aim to reach carbon neutrality, with the earliest target date being 2020.90% of these cities are members of the Climate Alliance and 75% of the Covenant of Mayors. City size is the strongest predictor for carbon neutrality, whilst climate network(s) membership, combining adaptation and mitigation into a single strategy, and local motivation also play a role. The methods, data, results and analysis of this study can serve as a reference and baseline for tracking climate mitigation ambitions across European and global cities
On the functional form of a nonlinear vibration absorber
Due to the frequency–energy dependence of nonlinear oscillations, nonlinear dynamical absorbers present interesting properties for mitigating unwanted vibrations in mechanical systems. Unlike the tuned mass damper, the functional form of a nonlinear absorber is not known a priori and must be determined. This short note addresses this issue when a light-weight nonlinear absorber is attached to a nonlinear primary structure. Numerical simulations demonstrate that the determination of an adequate functional form may be directly linked to the frequency–energy dependence of the primary structure
- …