231 research outputs found

    Climate change in the Kola Peninsula, Arctic Russia, during the last 50 years from meteorological observations

    Get PDF
    Abstract The authors provide a detailed climatology and evaluation of recent climate change in the Kola Peninsula, Arctic Russia, a region influenced by both the North Atlantic and Arctic Oceans. The analysis is based on 50 years of monthly surface air temperature (SAT), precipitation (PPN), and sea level pressure (SLP) data from 10 meteorological stations for 1966–2015. Regional mean annual SAT is ~0°C: the moderating effect of the ocean is such that coastal (inland) stations have a positive (negative) value. Examined mean annual PPN totals rise from ~430 mm in the northeast of the region to ~600 mm in the west. Annual SAT in the Kola Peninsula has increased by 2.3° ± 1.0°C over the past 50 years. Seasonally, statistically significant warming has taken place in spring and fall, although the largest trend has occurred in winter. Although there has been no significant change in annual PPN, spring has become significantly wetter and fall drier. The former is associated with the only significant seasonal SLP trend (decrease). A positive winter North Atlantic Oscillation (NAO) index is generally associated with a warmer and wetter Kola Peninsula whereas a positive Siberian high (SH) index has the opposite impact. The relationship between both the NAO and SH and the SAT is broadly coherent across the region whereas their relationship with PPN varies markedly, although none of the relationships is temporally invariant. Reduced sea ice in the Barents and White Seas and associated circulation changes are likely to be the principal drivers behind the observed changes.We thank Valery Demin for supplying the SAT and PPN data for Lovozero prior to 1985. In addition, we thank the staff at the various data portals described in Section 3 for their time and effort in making the data available. GJM is supported by the UK Natural Environment Research Council (NERC) through the British Antarctic Survey research program Polar Science for Planet Earth. RMV is funded by NERC PhD studentship NE/L002507/1.This is the author accepted manuscript. It first appeared from the American Meteorological Society at http://dx.doi.org/10.1175/JCLI-D-16-0179.1

    NMR chemical shift backbone assignment of the viral protein P1 encoded by the African Rice Yellow Mottle Virus

    Get PDF
    International audienceRNA silencing describes a pan-eukaryotic pathway of gene regulation where doubled stranded RNA are processed by the RNAse III enzyme Dicer or homologs. In particular, plants use it as a way to defend themselves against pathogen invasions. In turn, to evade the plant immune response, viruses have developed anti-RNA silencing mechanisms. They may indeed code for proteins called "viral suppressor of RNA silencing" which block the degrading of viral genomic or messenger RNA by the plant. The Rice Mottle Virus is an African virus of the sobemovirus family, which attacks the most productive rice varieties cultivated on this continent. It encodes P1, a cysteine-rich protein described as a potential RNA silencing suppressor. P1 is a 157 amino-acid long protein, characterized by a high propensity to aggregate concomitant with a limited stability with time in the conditions used in structural studies. To overcome this problem, shorter fragments were also studied. This strategy enabled the assignment of more than 90% backbone resonances of P1. This assignment should set the base of future NMR investigation of the protein structure and of its interactions with rice cellular partners

    Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains

    Get PDF
    Plant chloroplasts have versatile thioredoxin systems including two thioredoxin reductases and multiple types of thioredoxins. Plastid-localized NADPH-dependent thioredoxin reductase (NTRC) contains both reductase (NTRd) and thioredoxin (TRXd) domains in a single polypeptide and forms homodimers. To study the action of NTRC and NTRC domains in vivo, we have complemented the ntrc knockout line of Arabidopsis with the wild type and full-length NTRC genes, in which 2-Cys motifs either in NTRd, or in TRXd were inactivated. The ntrc line was also transformed either with the truncated NTRd or TRXd alone. Overexpression of wild-type NTRC promoted plant growth by increasing leaf size and biomass yield of the rosettes. Complementation of the ntrc line with the full-length NTRC gene containing an active reductase but an inactive thioredoxin domain, or vice versa, recovered wild-type chloroplast phenotype and, partly, rosette biomass production, indicating that the NTRC domains are capable of interacting with other chloroplast thioredoxin systems. Overexpression of truncated NTRd or TRXd in ntrc background did not restore wild-type phenotype. Modelling of the 3-dimensional structure of the NTRC dimer indicates extensive interactions between the NTR domains and the TRX domains further stabilize the dimeric structure. The long linker region between the NTRd and TRXd, however, allows flexibility for the position of the TRXd in the dimer. Supplementation of the TRXd in the NTRC homodimer model by free chloroplast thioredoxins indicated that TRXf is the most likely partner to interact with NTRC. We propose that overexpression of NTRC promotes plant biomass yield both directly by stimulation of chloroplast biosynthetic and protected pathways controlled by NTRC and indirectly via free chloroplast thioredoxins. Our data indicate that overexpression of chloroplast thiol redox-regulator has a potential to increase biofuel yield in plant and algal species suitable for sustainable bioene

    The expression of caffeic acid 3-O-methyltransferase in two wheat genotypes differing in lodging resistance

    Get PDF
    Stem lodging-resistance is an important phenotype in crop production. In the present study, the expression of the wheat COMT gene (TaCM) was determined in basal second internodes of lodging-resistant (H4564) and lodging-susceptible (C6001) cultivars at stem elongation, heading, and milky endosperm corresponding to Zadoks stages Z37, Z60, and Z75, respectively. The TaCM protein levels were analysed by protein gel blot and COMT enzyme activity was determined during the same stem developmental stages. TaCM mRNA levels were higher in H4546 from elongation to the milky stages and in C6001 the TaCM mRNA levels decreased markedly at the heading and milky stages. The TaCM protein levels and COMT activity were also higher in H4564 than that in C6001 at the heading and milky stages. These results corresponded to a higher lignin content measured by the Klason method and stem strength and a lower lodging index in H4564 than in C6001 at the heading and milky stages. Therefore, the TaCM mRNA levels, protein levels, and enzyme activity in developing wheat stems were associated with stem strength and lodging index in these two wheat cultivars. Southern analysis in a different population suggested that a TaCM locus was located in the distal region of chromosome 3BL, which has less investigated by QTL for lodging-resistant phenotype

    Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains

    Get PDF
    Plant chloroplasts have versatile thioredoxin systems including two thioredoxin reductases and multiple types of thioredoxins. Plastid-localized NADPH-dependent thioredoxin reductase (NTRC) contains both reductase (NTRd) and thioredoxin (TRXd) domains in a single polypeptide and forms homodimers. To study the action of NTRC and NTRC domains in vivo, we have complemented the ntrc knockout line of Arabidopsis with the wild type and full-length NTRC genes, in which 2-Cys motifs either in NTRd, or in TRXd were inactivated. The ntrc line was also transformed either with the truncated NTRd or TRXd alone. Overexpression of wild-type NTRC promoted plant growth by increasing leaf size and biomass yield of the rosettes. Complementation of the ntrc line with the full-length NTRC gene containing an active reductase but an inactive TRXd, or vice versa, recovered wild-type chloroplast phenotype and, partly, rosette biomass production, indicating that the NTRC domains are capable of interacting with other chloroplast thioredoxin systems. Overexpression of truncated NTRd or TRXd in ntrc background did not restore wild-type phenotype. Modeling of the three-dimensional structure of the NTRC dimer indicates extensive interactions between the NTR domains and the TRX domains further stabilize the dimeric structure. The long linker region between the NTRd and TRXd, however, allows flexibility for the position of the TRXd in the dimer. Supplementation of the TRXd in the NTRC homodimer model by free chloroplast thioredoxins indicated that TRXf is the most likely partner to interact with NTRC. We propose that overexpression of NTRC promotes plant biomass yield both directly by stimulation of chloroplast biosynthetic and protective pathways controlled by NTRC and indirectly via free chloroplast thioredoxins. Our data indicate that overexpression of chloroplast thiol redox-regulator has a potential to increase biofuel yield in plant and algal species suitable for sustainable bioenergy production

    Marine climate and hydrography of the Coralline Crag (early Pliocene, UK): isotopic evidence from 16 benthic invertebrate taxa.

    Get PDF
    The taxonomic composition of the biota of the Coralline Crag Formation (early Pliocene, eastern England) provides conflicting evidence of seawater temperature during deposition, some taxa indicating cool temperate conditions by analogy with modern representatives or relatives, others warm temperate to subtropical/tropical conditions. Previous isotopic (δ18O) evidence of seasonal seafloor temperatures from serial ontogenetic sampling of bivalve mollusk shells indicated cool temperate winter (< 10 °C) and/or summer (< 20 °C) conditions but was limited to nine profiles from two species, one ranging into and one occurring exclusively in cool temperate settings at present. We supplement these results with six further profiles from the species concerned and supply seven more from three other taxa (two supposedly indicative of warm waters) to provide an expanded and more balanced database. We also supply isotopic temperature estimates from 81 spot and whole-shell samples from these five taxa and 11 others, encompassing ‘warm’, ‘cool’ and ‘eurythermal’ forms by analogy with modern representatives or relatives. Preservation tests show no shell alteration. Subject to reasonable assumptions about water δ18O, the shell δ18O data either strongly indicate or are at least consistent with cool temperate seafloor conditions. The subtropical/tropical conditions suggested by the presence of the bryozoan Metrarabdotos did not exist. Microgrowth-increment and δ13C evidence indicate summer water-column stratification during deposition of the Ramsholt Member, unlike in the adjacent southern North Sea at present (well mixed due to shallow depth and strong tidal currents). Summer maximum surface temperature was probably about 5 °C above seafloor temperature and thus often slightly higher than now (17–19 °C rather than 16–17 °C), but only sometimes in the warm temperate range. Winter minimum surface temperature was below 10 °C and possibly the same as at present (6–7 °C). An expanded surface temperature range compared to now may reflect withdrawal of oceanic heat supply in conjunction with higher global temperature.British Geological Survey (BUFI S157), NERC Isotope Geoscience Facilities (IP-1155- 1109

    Historical Contingencies Modulate the Adaptability of Rice Yellow Mottle Virus

    Get PDF
    The rymv1-2 and rymv1-3 alleles of the RYMV1 resistance to Rice yellow mottle virus (RYMV), coded by an eIF(iso)4G1 gene, occur in a few cultivars of the Asiatic (Oryza sativa) and African (O. glaberrima) rice species, respectively. The most salient feature of the resistance breaking (RB) process is the converse genetic barrier to rymv1-2 and rymv1-3 resistance breakdown. This specificity is modulated by the amino acid (glutamic acid vs. threonine) at codon 49 of the Viral Protein genome-linked (VPg), a position which is adjacent to the virulence codons 48 and 52. Isolates with a glutamic acid (E) do not overcome rymv1-3 whereas those with a threonine (T) rarely overcome rymv1-2. We found that isolates with T49 had a strong selective advantage over isolates with E49 in O. glaberrima susceptible cultivars. This explains the fixation of the mutation T49 during RYMV evolution and accounts for the diversifying selection estimated at codon 49. Better adapted to O. glaberrima, isolates with T49 are also more prone than isolates with E49 to fix rymv1-3 RB mutations at codon 52 in resistant O. glaberrima cultivars. However, subsequent genetic constraints impaired the ability of isolates with T49 to fix rymv1-2 RB mutations at codons 48 and 52 in resistant O. sativa cultivars. The origin and role of the amino acid at codon 49 of the VPg exemplifies the importance of historical contingencies in the ability of RYMV to overcome RYMV1 resistance

    Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition

    Get PDF
    The hydrophobic cell wall polymer lignin is deposited in specialized cells to make them impermeable to water and prevent cell collapse as negative pressure or gravitational force is exerted. The variation in lignin subunit composition that exists among different species, and among different tissues within the same species suggests that lignin subunit composition varies depending on its precise function. In order to gain a better understanding of the relationship between lignin subunit composition and the physico-chemical properties of lignified tissues, detailed analyses were performed of near-isogenic brown midrib2 (bm2), bm4, bm2-bm4, and bm1-bm2-bm4 mutants of maize. This investigation was motivated by the fact that the bm2-bm4 double mutant is substantially shorter, displays drought symptoms even when well watered, and will often not develop reproductive organs, whereas the phenotypes of the individual bm single mutants and double mutant combinations other than bm2-bm4 are only subtly different from the wild-type control. Detailed cell wall compositional analyses revealed midrib-specific reductions in Klason lignin content in the bm2, bm4, and bm2-bm4 mutants relative to the wild-type control, with reductions in both guaiacyl (G)- and syringyl (S)-residues. The cellulose content was not different, but the reduction in lignin content was compensated by an increase in hemicellulosic polysaccharides. Linear discriminant analysis performed on the compositional data indicated that the bm2 and bm4 mutations act independently of each other on common cell wall biosynthetic steps. After quantitative analysis of scanning electron micrographs of midrib sections, the variation in chemical composition of the cell walls was shown to be correlated with the thickness of the sclerenchyma cell walls, but not with xylem vessel surface area. The bm2-bm4 double mutant represents the limit of phenotypic plasticity in cell wall composition, as the bm1-bm2-bm4 and bm2-bm3-bm4 mutants did not develop into mature plants, unlike the triple mutants bm1-bm2-bm3 and bm1-bm3-bm4
    corecore