129 research outputs found

    A new approach for modeling Cenozoic oceanic lithium isotope paleo-variations: the key role of climate

    Get PDF
    International audienceThe marine record of ocean lithium isotope composition may provide important information constraining the factors that control continental weathering and how they have varied in the past. However, the equations establishing links between the continental flux of Li to the ocean, the continental Li isotope composition and the ocean Li isotope composition are under-constrained, and their resolution are related to significant uncertainties. In order to partially reduce this uncertainty, we propose a new approach that couples the C and Li cycles, such that our proposed reconstruction of the Cenozoic Li cycle is compatible with the required stability of the exospheric carbon cycle on geological timescales. The results of this exercise show, contrary to expectations, that the Cenozoic evolution of the Li isotope composition of rivers did not necessarily mimic the oceanic δ7Li rise. In contrast, variations in the continental flux of Li to the ocean are demonstrated to play a major role in setting the ocean δ7Li. We also provide evidence that Li storage in secondary phases is an important element of the global Li cycle that cannot be neglected, in particular during the early Cenozoic. Our modeling of the published foraminifera record highlights a close link between soil formation rate and indexes recording the climate evolution during the Cenozoic, such as foraminifera δ18O and pCO2 reconstructions. This leads us to conclude that the Li isotope record does not provide persuasive, unique evidence for erosional forcing of Cenozoic change because it could alternatively be consistent with a climatic control on soil production rates

    Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada

    Get PDF
    International audienceWe report Li isotopic compositions, for river waters and suspended sediments, of about 40 rivers sampled within the Mackenzie River Basin in northwestern Canada. The aim of this study is to characterize the behaviour of Li and its isotopes during weathering at the scale of a large mixed lithology basin. The Mackenzie River waters display systematically heavier Li isotopic compositions relative to source rocks and suspended sediments. The range in delta Li-7 is larger in dissolved load (from +9.3 parts per thousand to +29.0 parts per thousand) compared to suspended sediments (from 1.7 parts per thousand to +3.2 parts per thousand), which are not significantly different from delta Li-7 values in bedrocks. Our study shows that dissolved Li is essentially derived from the weathering of silicates and that its isotopic composition in the dissolved load is inversely correlated with its relative mobility when compared to Na. The highest enrichment of Li-7 in the dissolved load is reported when Li is not or poorly incorporated in secondary phases after its release into solution by mineral dissolution. This counterintuitive observation is interpreted by the mixing of water types derived from two different weathering regimes producing different Li isotopic compositions within the Mackenzie River Basin. The incipient weathering regime characterizing the Rocky Mountains and the Shield areas produces Li-7 enrichment in the fluid phase that is most simply explained by the precipitation of oxyhydroxide phases fractionating Li isotopes. The second weathering regime is found in the lowland area and produces the lower delta Li-7 waters (but still enriched in Li-7 compared to bedrocks) and the most Li-depleted waters (compared to Na). Fractionation factors suggest that the incorporation of Li in clay minerals is the mechanism that explains the isotopic composition of the lowland rivers. The correlation of boron and lithium concentrations found in the dissolved load of the Mackenzie Rivers suggests that precipitation of clay minerals is favoured by the relatively high residence time of water in groundwater. In the Shield and Rocky Mountains, Li isotopes suggest that clay minerals are not forming and that secondary minerals with stronger affinity for Li-7 appear. Although the weathering mechanisms operating in the Mackenzie Basin need to be characterized more precisely, the Li isotope data reported here clearly show the control of Li isotopes by the weathering intensity. The spatial diversity of weathering regimes, resulting from a complex combination of factors such as topography, geology, climate and hydrology explains, in fine, the spatial distribution of Li isotopic ratios in the large drainage basin of the Mackenzie River. There is no simple relationship between Li isotopic composition and chemical denudation fluxes in the Mackenzie River Basi

    Lithium isotopes in low and high temperature hydrosystems

    No full text
    International audienceAssessing the origin and behaviour of lithium and the distribution of Li isotopes in hydro-systems is of major importance in order to increase our knowledge of the lithium cycling at the Earth's surface. Lithium is a fluid-mobile element and due to the large relative mass difference between its two stable isotopes, it is subject to significant low and high temperature mass fractionation which provides key information on the nature of water/rock interaction processes. The main objective of the present work is to constrain the behaviour of Li and its isotopes by focusing on three different hydrosystems: rainwaters, river waters and deep geothermal waters

    Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density

    Get PDF
    Abstract We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at pores. The acoustic energy and the waiting times between acoustic events follow power-law distributions. This remains true while the foam density is varied. However, experiments at low temperatures (PU foams more brittle) have not yielded power-laws for the waiting times. The cumulative acoustic energy has no power law divergence at the proximity of the failure point which is qualitatively in agreement with other experiments done at imposed strain. We notice a plateau in cumulative acoustic energy that seems to occur when a single crack starts to propagate

    Lithium Isotope Geochemistry in the Barton Peninsula, King George Island, Antarctica

    Get PDF
    Lithium (Li) has two stable isotopes, 6Li and 7Li, whose large relative mass difference is responsible for significant isotopic fractionation during physico-chemical processes, allowing Li isotopes to be a good tracer of continental chemical weathering. Although physical erosion is dominant in the Polar regions due to glaciers, increasing global surface temperature may enhance chemical weathering, with possible consequences on carbon biogeochemical cycle and nutriment flux to the ocean. Here, we examined elemental and Li isotope geochemistry of meltwaters, suspended sediments, soils, and bedrocks in the Barton Peninsula, King George Island, Antarctica. Li concentrations range from 8.7 nM to 23.3 μM in waters, from 0.01 to 1.43 ppm in suspended sediments, from 9.56 to 36.9 ppm in soils, and from 0.42 to 28.3 ppm in bedrocks. δ7Li values are also variable, ranging from +16.4 to +41.1‰ in waters, from −0.4 to +13.4‰ in suspended sediments, from −2.5 to +6.9‰ in soils, and from −1.8 to +11.7‰ in bedrocks. Elemental and Li isotope geochemistry reveals that secondary phase formation during chemical weathering mainly control dissolved δ7Li values, rather than a mixing with sea salt inputs from atmosphere or ice melting. Likewise, δ7Li values of suspended sediments and soils lower than those of bedrocks indicate modern chemical weathering with mineral neoformation. This study suggests that increasing global surface temperature enhances modern chemical weathering in Antarctica, continuing to lower δ7Li values in meltwater with intense water-rock interactions

    Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    Get PDF

    In situ measurements of calcium isotopes by ion microprobe in carbonates and application to foraminifera

    Get PDF
    An analytical procedure has been developed for the in situ measurement of calcium isotope composition of carbonates with a spatial resolution of 15–20 μm on a Caméca IMS 1270 ion microprobe. By using two Faraday cup detectors, the ⁴⁰Ca and ⁴⁴Ca can be measured simultaneously, improving the internal reproducibility. Instrumental mass fractionation (IMF) of calcium isotopes was observed to be independent of primary ion beam intensity and of the Mg content of the carbonate, but can depend on vacuum conditions. Three calcite reference materials were used in this study (ENS 0, MEX and BRET 105E) and their δ⁴⁴Ca values relative to NIST915a were reproducible within a typical 1σ standard deviation of ≈ 0.15‰.This analytical procedure was applied to planktonic foraminifera, Globorotalia inflata, dated at 2.8 Ma from Shatsky Rise (ODP leg 198). The range of measured δ⁴⁴Ca within a single test is 1.7‰. This intratest variation can be attributed to several processes such as temperature variation, ontogenic effects or differences between primary and secondary calcite (i.e. calcite precipitated by different biomineralization processes).Despite this intratest variation, the averages δ⁴⁴Ca for each foraminifer are similar and are in agreement with published δ⁴⁴Ca values measured for this age. This study shows that in situ δ⁴⁴Ca measurements in tests of foraminifera are an appropriate tool for investigating biomineralization processes

    Natural variations of lithium isotopes in a mammalian model

    No full text
    International audienc
    corecore