36 research outputs found
The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae)
[Abstract] The linkage between 5S ribosomal DNA and other multigene families has been detected in many eukaryote lineages, but whether it provides any selective advantage remains unclear. In this work, we report the occurrence of linked units of 5S ribosomal DNA (5S rDNA) and U1 small nuclear DNA (U1 snDNA) in 10 razor shell species (Mollusca: Bivalvia: Pharidae) from four different genera. We obtained several clones containing partial or complete repeats of both multigene families in which both types of genes displayed the same orientation. We provide a comprehensive collection of razor shell 5S rDNA clones, both with linked and nonlinked organisation, and the first bivalve U1 snDNA sequences. We predicted the secondary structures and characterised the upstream and downstream conserved elements, including a region at −25 nucleotides from both 5S rDNA and U1 snDNA transcription start sites. The analysis of 5S rDNA showed that some nontranscribed spacers (NTSs) are more closely related to NTSs from other species (and genera) than to NTSs from the species they were retrieved from, suggesting birth-and-death evolution and ancestral polymorphism. Nucleotide conservation within the functional regions suggests the involvement of purifying selection, unequal crossing-overs and gene conversions. Taking into account this and other studies, we discuss the possible mechanisms by which both multigene families could have become linked in the Pharidae lineage. The reason why 5S rDNA is often found linked to other multigene families seems to be the result of stochastic processes within genomes in which its high copy number is determinan
The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays
Background: Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates.Results: We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution.Conclusions: We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution
Jornada: Proyectos de I+D del sector construcción a nivel nacional
Datos técnicos: 254 minutos, color, español. Ficha técnica: Gabinete de Presidencia CSIC y Departamento de Comunicación. Emitido en directo el 20 feb 2024N
PCR cycles above routine numbers do not compromise high-throughput DNA barcoding results
High-throughput DNA barcoding has become essential in ecology and evolution but some technical questions still remain. Increasing the number of PCR cycles above routine 20-30 cycles is a common practice when working with old-type specimens, with little amounts of DNA, or when facing annealing issues with the primers. However, increasing the number of cycles can raise the number of artificial mutations due to polymerase errors. In this work we sequenced 20 COI libraries in the Illumina MiSeq platform. Libraries were prepared with 40, 45, 50, 55, and 60 PCR cycles from four individuals belonging to four species of four genera of cephalopods. We found no relationship between the number of PCR cycles and the number of mutations despite using a nonproofreading polymerase. Moreover, even when using a high number of PCR cycles the resulting number of mutations was low enough not to be an issue in the context of high-throughput DNA barcoding (but may still remain an issue in DNA metabarcoding due to chimera formation). We conclude that the common practice of increasing the number of PCR cycles should not negatively impact the outcome of a high-throughput DNA barcoding study in terms of the occurrence of point mutations.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
PCR cycles above routine numbers do not compromise high-throughput DNA barcoding results
High-throughput DNA barcoding has become essential in ecology and evolution, but some technical questions still remain. Increasing the number of PCR cycles above the routine 20-30 cycles is a common practice when working with old-type specimens, which provide little amounts of DNA, or when facing annealing issues with the primers. However, increasing the number of cycles can raise the number of artificial mutations due to polymerase errors. In this work, we sequenced 20 COI libraries in the Illumina MiSeq platform. Libraries were prepared with 40, 45, 50, 55, and 60 PCR cycles from four individuals belonging to four species of four genera of cephalopods. We found no relationship between the number of PCR cycles and the number of mutations despite using a nonproofreading polymerase. Moreover, even when using a high number of PCR cycles, the resulting number of mutations was low enough not to be an issue in the context of high-throughput DNA barcoding (but may still remain an issue in DNA metabarcoding due to chimera formation). We conclude that the common practice of increasing the number of PCR cycles should not negatively impact the outcome of a high-throughput DNA barcoding study in terms of the occurrence of point mutations
Species delimitation and DNA barcoding of Atlantic Ensis (Bivalvia, Pharidae)
Ensis Schumacher, 1817 razor shells occur at both sides of the Atlantic and along the Pacific coasts of tropical west America, Peru, and Chile. Many of them are marketed in various regions. However, the absence of clear autapomorphies in the shell and the sympatric distributions of some species often prevent a correct identification of specimens. As a consequence, populations cannot be properly managed, and edible species are almost always mislabelled along the production chain. In this work, we studied whether the currently accepted Atlantic Ensis morphospecies are different evolutionary lineages, to clarify their taxonomic status and enable molecular identifications through DNA barcoding. For this, we studied 109 specimens sampled at 27 sites, which were identified as belonging to nine of those morphospecies. We analysed nucleotide variation at four nuclear (18S, 5.8S, ITS1, and ITS2) and two mitochondrial (COI and 16S) regions, although the 18S and 5.8S regions were not informative at the species level and were not further considered. The phylogenetic trees and networks obtained supported all morphospecies as separately evolving lineages. Phylogenetic trees recovered Ensis at each side of the Atlantic as reciprocally monophyletic. Remarkably, we confirm the co-occurrence of the morphologically similar E. minor (Chenu, 1843) and E. siliqua (Linné, 1758) along the NW Iberian coast, a fact that has been often overlooked. In South America, a relevant divergence between E. macha (Molina, 1792) individuals from Chile and Argentina was unveiled and suggests incipient speciation. We also confirm the occurrence of the North American species E. directus (Conrad, 1843) as far south as north-eastern Florida. Among the genomic regions analysed, we suggest COI as the most suitable DNA barcode for Atlantic Ensis. Our results will contribute to the conservation and management of Ensis populations and will enable reliable identifications of the edible species, even in the absence of the valves. The name Ensis coseli Vierna nom. nov. is proposed to replace E. minor Dall, 1899 non (Chenu, 1843)
Species delimitation and DNA barcoding of Atlantic Ensis (Bivalvia, Pharidae)
Ensis Schumacher, 1817 razor shells occur at both sides of the Atlantic and along the Pacific coasts of tropical west America, Peru, and Chile. Many of them are marketed in various regions. However, the absence of clear autapomorphies in the shell and the sympatric distributions of some species often prevent a correct identification of specimens. As a consequence, populations cannot be properly managed, and edible species are almost always mislabelled along the production chain. In this work, we studied whether the currently accepted Atlantic Ensis morphospecies are different evolutionary lineages, to clarify their taxonomic status and enable molecular identifications through DNA barcoding. For this, we studied 109 specimens sampled at 27 sites, which were identified as belonging to nine of those morphospecies. We analysed nucleotide variation at four nuclear (18S, 5.8S, ITS1, and ITS2) and two mitochondrial (COI and 16S) regions, although the 18S and 5.8S regions were not informative at the species level and were not further considered. The phylogenetic trees and networks obtained supported all morphospecies as separately evolving lineages. Phylogenetic trees recovered Ensis at each side of the Atlantic as reciprocally monophyletic. Remarkably, we confirm the co-occurrence of the morphologically similar E. minor (Chenu, 1843) and E. siliqua (Linné, 1758) along the NW Iberian coast, a fact that has been often overlooked. In South America, a relevant divergence between E. macha (Molina, 1792) individuals from Chile and Argentina was unveiled and suggests incipient speciation. We also confirm the occurrence of the North American species E. directus (Conrad, 1843) as far south as north-eastern Florida. Among the genomic regions analysed, we suggest COI as the most suitable DNA barcode for Atlantic Ensis. Our results will contribute to the conservation and management of Ensis populations and will enable reliable identifications of the edible species, even in the absence of the valves. The name Ensis coseli Vierna nom. nov. is proposed to replace E. minor Dall, 1899 non (Chenu, 1843)