447 research outputs found

    Bending properties in oxidized porous silicon waveguides

    Get PDF
    The greatest limit in high-speed communications between different circuit blocks is due to the delays introduced by metal interconnections. Knock-down wire communication bottleneck is, therefore, one of the best goals that current research could reach in the held of fast electronics. A possible solution is to build fast optical links and even better if the technology is based on silicon. To attain these ends, we have made studies into possibility to fabricate optical waveguide based on oxidized porous silicon. In the last few years, such a device: was realized and characterized. Waveguiding in the visible and in the near infrared was demonstrated, With propagation losses of about 3-5 dB/cm for a light with a wavelength of 632.8 nm. Moreover, a design feature of an integrated waveguide based on oxidized porous silicon is that it offers a spontaneous bending of the waveguiding layer at its ends. The edge bending is provided by a convex camber of a leading edge of forming porous silicon. This bending can be exploited to promote a vertical light output with no use of any additional devices. The paper discusses the properties of edge bending, evaluation of the light losses depending on the radius of curvature, and analysis of possibilities to reduce these losses. (C) 2001 Elsevier Science Ltd. All rights reserved

    Modelling interactions of acid–base balance and respiratory status in the toxicity of metal mixtures in the American oyster Crassostrea virginica

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology 155 (2010): 341-349, doi:10.1016/j.cbpa.2009.11.019.Heavy metals, such as copper, zinc and cadmium, represent some of the most common and serious pollutants in coastal estuaries. In the present study, we used a combination of linear and artificial neural network (ANN) modelling to detect and explore interactions among low-dose mixtures of these heavy metals and their impacts on fundamental physiological processes in tissues of the Eastern oyster, Crassostrea virginica. Animals were exposed to Cd (0.001 – 0.400 μM), Zn (0.001 – 3.059 μM) or Cu (0.002 – 0.787 μM), either alone or in combination for 1 to 27 days. We measured indicators of acid-base balance (hemolymph pH and total CO2), gas exchange (Po2), immunocompetence (total hemocyte counts, numbers of invasive bacteria), antioxidant status (glutathione, GSH), oxidative damage (lipid peroxidation; LPx), and metal accumulation in the gill and the hepatopancreas. Linear analysis showed that oxidative membrane damage from tissue accumulation of environmental metals was correlated with impaired acid-base balance in oysters. ANN analysis revealed interactions of metals with hemolymph acid-base chemistry in predicting oxidative damage that were not evident from linear analyses. These results highlight the usefulness of machine learning approaches, such as ANNs, for improving our ability to recognize and understand the effects of sub-acute exposure to contaminant mixtures.This study was supported by NOAA’s Center of Excellence in Oceans and Human Health at HML and the National Science Foundation

    Gene Expression Rhythms in the Mussel Mytilus galloprovincialis (Lam.) across an Annual Cycle

    Get PDF
    Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends – in terms of relative mRNA abundance- we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion showed higher mRNA levels during summer. Moreover, we found different gene transcriptomic patterns in the digestive glands of males when compared to females, during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases respect to the resting period (stage I) with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. These data showed a clear temporal pattern in transcriptomic profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in relative mRNA abundance

    Seasonal Variations of the Activity of Antioxidant Defense Enzymes in the Red Mullet (Mullus barbatus l.) from the Adriatic Sea

    Get PDF
    This study investigated seasonal variations of antioxidant defense enzyme activities: total, manganese, copper zinc containing superoxide dismutase (Tot SOD, Mn SOD, CuZn SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and biotransformation phase II enzyme glutathione-S-transferase (GST) activity in the liver and white muscle of red mullet (Mullus barbatus). The investigations were performed in winter and spring at two localities: Near Bar (NB) and Estuary of the River Bojana (EB) in the Southern Adriatic Sea. At both sites, Mn SOD, GSH-Px, GR and GST activities decreased in the liver in spring. In the white muscle, activities of Mn SOD, GSH-Px, GR and GST in NB decreased in spring. GR decreased in spring in EB, while CAT activity was higher in spring at both sites. The results of Principal Component Analysis (PCA) based on correlations indicated a clear separation of various sampling periods for both investigated tissues and a marked difference between two seasons. Our study is the first report on antioxidant defense enzyme activities in the red mullet in the Southern Adriatic Sea. It indicates that seasonal variations of antioxidant defense enzyme activities should be used in further biomonitoring studies in fish species

    High Frequency of Endothelial Colony Forming Cells Marks a Non-Active Myeloproliferative Neoplasm with High Risk of Splanchnic Vein Thrombosis

    Get PDF
    Increased mobilization of circulating endothelial progenitor cells may represent a new biological hallmark of myeloproliferative neoplasms. We measured circulating endothelial colony forming cells (ECFCs) in 106 patients with primary myelofibrosis, fibrotic stage, 49 with prefibrotic myelofibrosis, 59 with essential thrombocythemia or polycythemia vera, and 43 normal controls. Levels of ECFC frequency for patient's characteristics were estimated by using logistic regression in univariate and multivariate setting. The sensitivity, specificity, likelihood ratios, and positive predictive value of increased ECFC frequency were calculated for the significantly associated characteristics. Increased frequency of ECFCs resulted independently associated with history of splanchnic vein thrombosis (adjusted odds ratio = 6.61, 95% CI = 2.54–17.16), and a summary measure of non-active disease, i.e. hemoglobin of 13.8 g/dL or lower, white blood cells count of 7.8×109/L or lower, and platelet count of 400×109/L or lower (adjusted odds ratio = 4.43, 95% CI = 1.45–13.49) Thirteen patients with splanchnic vein thrombosis non associated with myeloproliferative neoplasms were recruited as controls. We excluded a causal role of splanchnic vein thrombosis in ECFCs increase, since no control had elevated ECFCs. We concluded that increased frequency of ECFCs represents the biological hallmark of a non-active myeloproliferative neoplasm with high risk of splanchnic vein thrombosis. The recognition of this disease category copes with the phenotypic mimicry of myeloproliferative neoplasms. Due to inherent performance limitations of ECFCs assay, there is an urgent need to arrive to an acceptable standardization of ECFC assessment

    Identification of Reproduction-Specific Genes Associated with Maturation and Estrogen Exposure in a Marine Bivalve Mytilus edulis

    Get PDF
    Background: While it is established that vertebrate-like steroids, particularly estrogens (estradiol, estrone) and androgens (testosterone), are present in various tissues of molluscs, it is still unclear what role these play in reproductive endocrinology in such organisms. This is despite the significant commercial shellfishery interest in several bivalve species and their decline. Methodology/Principal Findings: Using suppression subtraction hybridisation of mussel gonad samples at two stages (early and mature) of gametogenesis and (in parallel) following controlled laboratory estrogen exposure, we isolate several differentially regulated genes including testis-specific kinases, vitelline lysin and envelope sequences. Conclusions: The differentially expressed mRNAs isolated provide evidence that mussels may be impacted by exogenous estrogen exposure

    The Organophosphate Chlorpyrifos Interferes with the Responses to 17β-Estradiol in the Digestive Gland of the Marine Mussel Mytilus galloprovincialis

    Get PDF
    BACKGROUND: Many pesticides have been shown to act as endocrine disrupters. Although the potencies of currently used pesticides as hormone agonists/antagonists are low compared with those of natural ligands, their ability to act via multiple mechanisms might enhance the biological effect. The organophosphate Chlorpyrifos (CHP) has been shown to be weakly estrogenic and cause adverse neurodevelopmental effects in mammals. However, no information is available on the endocrine effects of CHP in aquatic organisms. In the digestive gland of the bivalve Mytilus galloprovincialis, a target tissue of both estrogens and pesticides, the possible effects of CHP on the responses to the natural estrogen 17β-estradiol (E(2)) were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Mussels were exposed to CHP (4.5 mg/l, 72 hrs) and subsequently injected with E(2) (6.75 ng/g dw). Responses were evaluated in CHP, E(2) and CHP/E(2) treatment groups at 24 h p.i. by a biomarker/transcriptomic approach. CHP and E(2) induced additive, synergistic, and antagonistic effects on lysosomal biomarkers (lysosomal membrane stability, lysosome/cytoplasm volume ratio, lipofuscin and neutral lipid accumulation). Additive and synergistic effects were also observed on the expression of estrogen-responsive genes (GSTπ, catalase, 5-HTR) evaluated by RT-Q-PCR. The use of a 1.7K cDNA Mytilus microarray showed that CHP, E(2) and CHP/E(2), induced 81, 44, and 65 Differentially Expressed Genes (DEGs), respectively. 24 genes were exclusively shared between CHP and CHP/E(2), only 2 genes between E(2) and CHP/E(2). Moreover, 36 genes were uniquely modulated by CHP/E(2). Gene ontology annotation was used to elucidate the putative mechanisms involved in the responses elicited by different treatments. CONCLUSIONS: The results show complex interactions between CHP and E(2) in the digestive gland, indicating that the combination of certain pesticides and hormones may give rise to unexpected effects at the molecular/cellular level. Overall, these data demonstrate that CHP can interfere with the mussel responses to natural estrogens
    corecore