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 29 

Abstract 30 

Heavy metals, such as copper, zinc and cadmium, represent some of the most common and 31 

serious pollutants in coastal estuaries.  In the present study, we used a combination of linear and 32 

artificial neural network (ANN) modelling to detect and explore interactions among low-dose 33 

mixtures of these heavy metals and their impacts on fundamental physiological processes in 34 

tissues of the Eastern oyster, Crassostrea virginica.  Animals were exposed to Cd (0.001 – 0.400 35 

M), Zn (0.001 – 3.059 M) or Cu (0.002 – 0.787 M), either alone or in combination for 1 to 36 

27 days.  We measured indicators of acid-base balance (hemolymph pH and total CO2), gas 37 

exchange (Po2), immunocompetence (total hemocyte counts, numbers of invasive bacteria), 38 

antioxidant status (glutathione, GSH), oxidative damage (lipid peroxidation; LPx), and metal 39 

accumulation in the gill and the hepatopancreas.  Linear analysis showed that oxidative 40 

membrane damage from tissue accumulation of environmental metals was correlated with 41 

impaired acid-base balance in oysters.  ANN analysis revealed interactions of metals with 42 

hemolymph acid-base chemistry in predicting oxidative damage that were not evident from 43 

linear analyses.  These results highlight the usefulness of machine learning approaches, such as 44 

ANNs, for improving our ability to recognize and understand the effects of sub-acute exposure to 45 

contaminant mixtures. 46 

 47 

Keywords:  heavy metals, artificial neural networks, Crassostrea virginica, lipid peroxidation, 48 

glutathione, acid-base balance, hemolymph PO2 49 

 50 

1. Introduction 51 

 52 

Industrialization and urbanization along the coastline of the US have substantially increased 53 

the amount and variety of anthropogenic pollutants entering estuarine ecosystems.  Among the 54 

most common of these contaminants, heavy metals are of particular concern because they persist 55 

in the environment and have a wide variety of adverse effects.  Developing biomarkers and 56 

predicting effects of contaminant mixtures, has garnered much attention in both human health 57 



 3

and ecological risk assessments (Carpenter et al. 2002; Yang et al. 2007; Wang et al. 2008) with 58 

the general recognition that the relationship among these mixture components and their 59 

biological effects is both intricate and complex (Sexton et al. 2007).  For heavy metal mixtures 60 

this complexity is driven in part by the fact that many of these metals interact with a wide but 61 

common set of cellular targets, but may differ in affinity for these targets by many orders of 62 

magnitude (Viarengo 1989a). 63 

We hypothesized that the relationship among heavy metals and their physiological effects 64 

might be detected and modelled using a combination of linear and artificial neural network 65 

(ANN) approaches.  ANNs have been used to develop predictive models of other complex 66 

systems such climate change (Cannon et al. 2002, among others) and disease status in humans 67 

based upon gene expression profiles (Khan et al. 2001; Linder et al. 2004; Dankbar et al. 2007, 68 

among others). 69 

To test this hypothesis, we characterized the physiological effects of environmentally-70 

relevant low-dose mixtures of Cu, Cd, and Zn (Sanger et al. 1999), either alone or in 71 

combination for periods from 1 – 27 days, in the Eastern oyster, Crassostrea virginica.  This 72 

ecologically and economically important bivalve mollusc lives in close association with 73 

estuarine sediments where its sessile nature and filter-feeding habit maximize the accumulation 74 

of contaminants in their tissues in concentrations high above those found in the surrounding 75 

seawater (Jenny et al. 2002). 76 

In oysters, as in other organisms, Cu, Cd and Zn exist as divalent cations which are free or 77 

complexed to different classes of biological ligands.  Cd is a trace metal with no known 78 

biological function, while Cu and Zn are essential elements and, as such, are required to maintain 79 

cellular homeostasis.  In oysters, the gill and the hepatopancreas (digestive gland) are the 80 

primary tissues involved in the accumulation and detoxification of heavy metals, such as Cu, Zn 81 

and Cd (Marigómez et al. 2002; Sokolova et al. 2005).  Heavy metals enhance the intracellular 82 

formation of toxic reactive oxygen species (ROS) (Stohs et al. 1995b; Ringwood et al. 1998; 83 

Geret et al. 2002b; Dailianis et al. 2005).  Thus, metal-binding proteins and antioxidant enzymes, 84 

such as glutathione (GSH) and metallothioneins (MTs) are important detoxification elements that 85 

are induced to maintain the balance between pro- and antioxidative systems in cells (Dovzhenko 86 

et al. 2005).  Indeed, studies have shown that surplus ROS can alter the structure of cell 87 

membranes by stimulating the peroxidation of membrane lipids.  Thus, for the present study, 88 
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oysters were exposed to Cd, Zn, or Cu, either alone or in combination, for periods from 1 – 27 89 

days and indicators of antioxidant defense (GSH), oxidative damage (lipid peroxidation; LPx), 90 

immunocompetence (total hemocyte counts, numbers of invasive bacteria), as well as blood gas 91 

and acid-base balance (hemolymph PO2, pH, total CO2) were measured for each animal.  The 92 

experimental design optimized input data for ANN analysis, which requires little or no 93 

understanding of the mechanistic associations of the measured variables, but does require 94 

considerable volumes of data. This design contrasts with traditional statistical approaches which 95 

require extensive knowledge of the system, but comparatively little data. Perhaps more 96 

succinctly traditional linear analysis fits data to models, but ANN’s extracts models from data.  97 

ANN’s do not require independence among the input variables (independent variables in linear 98 

regression). Furthermore, in the application of machine learning approaches, the preference is for 99 

limited or no replication of the experimental conditions, so the ANNs learn rather than 100 

memorize. For these and other reasons thaey have been used extensively in medical, engineering, 101 

physics and atmospheric sciences (Almeida, 2002, Cannon et al. 2002 Khan et al. 2001; Linder 102 

et al. 2004; Dankbar et al. 2007, Chapman  et al. 2009) . Detailed explanations of the approach 103 

can be found in Bishop (1996a,b Bishop 2006). Our approach was a compromise between the 104 

requirements of linear statistics and of machine learning provided by ANNs.  First, correlations 105 

among the experimental variables were examined by linear statistical tools to provide statistical 106 

power.  Subsequently, ANN analysis was employed to explore the higher dimensional 107 

interactions among metal mixtures on the oyster’s physiological response. 108 

 109 

2. Materials and Methods 110 

 111 

2.1. Animal collection and maintenance 112 

 113 

Adult Eastern oysters, Crassostrea virginica (Gmelin), from Taylor Shellfish Farms 114 

(Shelton, WA) were held for 30 days in well-aerated recirculating natural seawater systems at 25 115 

ppt salinity and 20 – 22 º C on a 12 h light cycle.  During this period oysters were fed a mixed 116 

algal suspension (Shellfish Diet 1800, Reed Mariculture) every second day. 117 

 118 

2.2. Basic experimental protocol 119 
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 120 

One day prior to the start of the experiment, 4 oysters were placed in each of 54 five L 121 

beakers.  Beakers contained four L of well-aerated filtered (0.45 µm) seawater maintained at 25 122 

ppt salinity and 18  1 °C.  At the start of the 27 day experiment (Day 0), beakers were dosed 123 

with single or multiple metals at environmentally relevant doses (Table 1): Cd (0.001 – 0.400 124 

M), Zn (0.001 – 3.059 M) or Cu (0.002 – 0.787 M).  Thereafter, the seawater in each beaker 125 

was routinely exchanged every second day, at which time metals were replenished in each 126 

beaker to their predetermined concentrations, and algal suspension added to facilitate metal 127 

uptake by the oysters.  Food was withheld from oysters at least 24 h before they were sampled. 128 

Sampling of oysters began on day 1 of the 27 day metal study, with 1 oyster sampled per day 129 

from each of 8 beakers.  Sampling began with beaker number one and continued to beaker 54, 130 

then back to beaker one, continuing for 27 days until all 216 samples had been exhausted.  The 131 

study design was not consistent with a typical dose-response model based on linear statistics; 132 

instead this design generated 216 individual treatments that ultimately could be analyzed by 133 

ANNs.  A total of 8 animals were found dead or moribund at the time of sampling; these oysters 134 

were not associated with any particular dosing regimen and were excluded from the study. 135 

Each sampled oyster was blotted dry with a paper towel and weight, length, and width were 136 

recorded.  Hemolymph (2 separate samples) was sampled anaerobically from the adductor 137 

muscle of each oyster using a 1 mL glass syringe fitted with a 23-ga needle.  The dead space in 138 

the needle and syringe was filled with nitrogen-saturated distilled water to reduce contamination 139 

of the sample by atmospheric oxygen; the syringe was placed on ice prior to sampling.  To gain 140 

access to the adductor muscle, the shell of the oyster was quickly notched along the posterior 141 

margin using pliers, exposing the muscle.  Immediately following hemolymph withdrawal, 142 

oysters were placed on ice for dissection and tissue processing.  Specific procedures are 143 

described below. 144 

 145 

2.3. Quantification of total hemocyte count (THC) and culturable bacteria in hemolymph  146 

 147 

Approximately 0.5 mL of hemolymph was withdrawn from the adductor muscle of each 148 

oyster.  An aliquot of this sample was fixed with neutral buffered formaldehyde and hemocytes 149 

counted with a hemocytometer (Macey et al. 2008).  For total counts of culturable bacteria, a 150 



 6

second aliquot of the original hemolymph sample was overlayed in marine agar on TSA 151 

supplemented with 2.0% NaCl; for total culturable Vibrio, a second 100 L aliquot of 152 

hemolymph was overlayed in marine again and cultured on TCBS agar supplemented with 1.5% 153 

NaCl (Macey et al. 2008).  Data were expressed as total bacteria and Vibrio spp. mL-1 of 154 

hemolymph according to growth on TSA and TCBS plates, respectively. 155 

 156 

2.4. Hemolymph variables 157 

 158 

A second hemolymph sample was withdrawn from the adductor muscle of each oyster to 159 

assess hemolymph gas and acid-base chemistry.  All instruments were thermostatted to 18  0.1 160 

°C.  The partial pressure of oxygen (PO2) in the hemolymph was determined with a Radiometer 161 

PHM pH/blood gas monitor and PO2 electrode.  Hemolymph pH was determined with a 162 

Radiometer (BMS2 Mk2 Blood Micro System) capillary pH electrode and PHM pH/blood gas 163 

monitor that had been calibrated at experimental temperatures with precision Radiometer buffers.  164 

Total carbon dioxide, i.e., all forms of CO2 including molecular CO2, HCO3
−, CO3

=, and 165 

carbamino CO2, in the hemolymph was determined with a Capni-Con 5 total CO2 analyzer 166 

(Cameron Instrument Company). 167 

 168 

2.5. Oyster dissection and tissue processing. 169 

 170 

The right valve of each oyster was removed by breaking the hinge of the shell and 171 

removing the gills and the hepatopancreas to separate weigh boats.  Tissues were minced and 172 

approximately 0.02 g (minimum) and 0.05 g (maximum) samples of the minced tissues were 173 

transferred to separate cryotubes, flash frozen in liquid nitrogen and stored at −80 °C until they 174 

were used for the GSH, LPx and metal content assays (see below). 175 

 176 

2.6. Lipid peroxidation (LPx) and glutathione (GSH) assays. 177 

 178 

Lipid peroxidation (LPx) in the gill and hepatopancreas of C. virginica was measured 179 

using a colorimetric assay that quantifies lipid degradation products based on the formation of 180 

total thiobarbituric acid reactive substances (TBARS) with malondialdehyde (TBARS) as the 181 
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standard (Ringwood et al. 1999b).  GSH concentrations of individual oyster tissues were 182 

determined using the glutathione reductase recycling assay described by Ringwood et al. 183 

(1999b). 184 

 185 

2.7. Analysis of metal content 186 

 187 

Tissues were digested in concentrated nitric acid at 160 °C at 210 psi and 225 watt for 6 188 

min.  Cooled samples were spiked with yttrium standard (10 ppm final concentration) and 189 

analyzed for Cu, Cd and Zn content by Inductively Coupled Plasma-Atomic Emission 190 

Spectroscopy.  The National Bureau of Standards (NBS) Mussel Reference Material #1974b and 191 

Pygmy Sperm Whale Reference Material # QC03-LH3 were analysed with the samples to verify 192 

the metal analysis; the percent recoveries over all batches were 101.67 ± 11.74, 101.87 ± 11.14, 193 

and 99.00 ± 10.99% (mean ± S.D.) for Cu, Zn and Cd, respectively, for the Whale Reference 194 

Material and 106.78 ± 5.52, 95.74 ± 4.70, and 106.97 ± 9.21%, respectively, for the Mussel 195 

Reference Material. . 196 

 197 

2.8. Statistical analysis. 198 

.    To determine the effect of metal exposure on the tissue accumulation of each metal and to 199 

assess potential relationships between tissue metal content and physiological responses, data 200 

were analyzed initially by linear statistics using SigmaStat 3.1 and SYSTAT 11 software.  201 

Correlations between tissue content of each metal and physiological measures were investigated 202 

using Pearson’s Product Moment Correlation procedure.  All tests for normality (Kolmogorov-203 

Smirnov test) or equal variances failed, therefore, correlation analyses were performed on rank 204 

transformed data.  One-way ANOVA was used to test for differences in concentrations of each 205 

metal between the gills and the hepatopancreas of oysters exposed to metals and was also used to 206 

test for differences between basal concentrations of each metal in each tissue of oysters not 207 

exposed to metals.  All tests for normality or equal variances failed, therefore, a Kruskal-Wallis 208 

ANOVA on Ranks test was used to test for significant differences.  Interactions between metal 209 

content of each tissue and physiological responses were assessed by analysis of variance 210 

(ANOVA) using General Linear Models (GLM) in SYSTAT 11.  Since all test for normality and 211 

equal variance failed, GLM on quantile-normalized data were used to test for significant 212 
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interactions.  Each GLM consisted of 3 independent variables [tissue (gill or hepatopancreas) Cu, 213 

Zn and Cd] and one dependent variable [tissue (gill or hepatopancreas) TBARS].  Significance 214 

was assigned at p ≤0.05 for all analyses. Subsequently, ANNs were used to model potential 215 

interactions of tissue metal contents and hemolymph measures in predicting tissue oxidative 216 

damage (LPx) or antioxidant status (GSH).  Each of the ANNs consisted of 6 input variables 217 

[hemolymph pH, total CO2, PO2, and tissue (gill or hepatopancreas) Cu, Zn and Cd] with one 218 

output variable.  For each output variable (gill LPx, gill GSH, hepatopancreas LPx and 219 

hepatopancreas GSH), separate ANNs (n = 30) were developed using WebNeuralNet 1.0 220 

(Almeida 2002).  All variables were scaled to their non-parametric cumulative distributions by 221 

replacing the raw values with their rank/n (n = total data points) to overcome scale differences.  222 

The transformed data were then divided into two sets by random allocation; one comprising 90% 223 

of the records to train the ANN, while the remaining data were used as a cross validation (CV) 224 

set.  A new subset of data was randomly selected before training each ANN to avoid bias in the 225 

selection of the CV set.  Each ANN was first trained using both the input and output data of the 226 

training set, which consisted of 187 data points from each of the input and output variables.  To 227 

prevent over training the ANNs, an early stopping procedure (Almeida 2002) was employed.  228 

After each ANN was trained, the withheld data points from the CV set were analyzed to evaluate 229 

the predictive capabilities of the ANN.  In essence, this was achieved by calculating the R-230 

squared (R2) values for the outputs of each ANN and the observed values of the accompanying 231 

CV sets, and comparing the CV set predictions with those generated by the appropriate ANN.  232 

Next, the impact of each input variable (hemolymph pH, total CO2, PO2, tissue Cu, Cd, Zn) was 233 

examined by computing the sensitivities of the outputs to changes in the inputs (Heshem, 1992) 234 

for all ANNs in which the model and CV set R2 value were greater than the median value for all 235 

30 ANNs.  The interactions of the inputs on the outputs were examined using a derivative of the 236 

approach of Cannon and McKendry (2002), where the two variables with the highest sensitivities 237 

were allowed to vary in 5% increments over the scaled range and all other input variables were 238 

held to their mean (50%) values.  These ‘artificial’ data were then fed to the ANN models with 239 

the largest R2 values to predict the output value and the results plotted on three-dimensional 240 

surfaces. 241 

 242 

3. Results 243 
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 244 

3.1. Metal accumulation in the tissues of C. virginica. 245 

 246 

Overall, measured concentrations of Cu, Cd and Zn (µg g−1 wet weight tissue) were 247 

higher in the hepatopancreas than in the gills of oysters exposed to metals (one-way ANOVA; P 248 

< 0.001, < 0.001, = 0.003 and for Cu, Cd and Zn, respectively).  Furthermore, basal 249 

concentrations of Cu and Zn were noticeably higher and more variable in the gills and the 250 

hepatopancreas when compared to basal Cd concentrations (P < 0.001).  Tissue levels of the 251 

essential metals Cu and Zn were independent of the ambient water concentrations of the metals 252 

over the entire range of exposures (Fig. 1A, B).  In contrast, cadmium, a non-essential metal, was 253 

the only metal that accumulated linearly with time in the gill (r = 0.828; P < 0.001) and the 254 

hepatopancreas (r = 0.793; P < 0.001) over the full range of Cd exposure concentrations (Fig. 255 

1C).  Cu contents were directly related to those of Zn in the gill (n = 208, r = 0.0713, P < 0.001) 256 

and in the hepatopancreas (n = 208, r = 0.649, P < 0.001).  To a lesser degree, Cu content 257 

positively correlated with Cd content in the gill (r = 0.216, P = 0.0018), but not in the 258 

hepatopancreas.  No other significant correlations were observed between measured metals in 259 

either tissue. 260 

 261 

3.2. Correlation of measured tissue metals with physiological traits of C. virginica. 262 

 263 

Since each of the 216 test animals represented a unique set of metal exposure parameters 264 

(combination of metals, dose levels and duration), the resulting values could not be represented 265 

by standard descriptive statistics.  Physiological data obtained from the 216 test animals (Figure 266 

2) generally fell within ranges reported for C. virginica in control or low level metal exposures 267 

(Viarengo et al. 1990; Roméo et al. 1997; Ringwood et al. 1998; Ringwood et al. 1999a).  268 

Correlations between metal exposures and physiological measures were investigated using 269 

Pearson’s Product Moment Correlation procedure.  Exposure to Zn was negatively correlated 270 

with TBARS, indicators of oxidative membrane damage in the hepatopancreas, (r = −0.150, P = 271 

0.0304), but not in the gill.  No other significant relationships were noted between metal 272 

exposures and physiological measurements in oysters (data not shown).  In contrast, tissue 273 

concentrations of individual metals were associated with several physiological measurements 274 
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(Fig. 3A, B), most notably TBARS.  In the gill, Cu (r = 0.527, P < 0.001), Cd (r = 0.204, P = 275 

0.0032) and Zn (r = 0.256, P < 0.001) correlated positively with TBARS, as did Cu (r = 0.618, P 276 

< 0.001) and Zn (r = 0.247, P < 0.001) in the hepatopancreas.  By comparison, metal associations 277 

with GSH were mixed.  In the gill only Cu (r = 0.203, P = 0.0033) but not Zn or Cd positively 278 

correlated with antioxidant GSH, while both Cd (r = −0.149, P < 0.001) and Zn (r = −0.95, P = 279 

0.0049) in the hepatopancreas were negatively associated with GSH in that tissue. 280 

Several other significant correlations were noted (Fig. 3A, B).  Gill Cd was associated 281 

with increased hemolymph pH (r = 0.159, p = 0.0221) while hepatopancreas Cu correlated with 282 

increased hemolymph pH (and r = 0.284, P < 0.001, respectively) and decreased total CO2 (r = 283 

−0.137, P = 0.0477).  Of the three metals, only Cu was associated with markers of immune 284 

function.  Gill Cu was positively correlated with total culturable bacteria in the hemolymph (r = 285 

0.138, P = 0.0461), while hepatopancreas Cu was negatively associated with THC (r = −0.180, P 286 

= 0.0092). 287 

In the hepatopancreas there was a significant interaction between measured Cu and Zn 288 

when predicting oxidative damage, measured as TBARS (Table 2, GLM, P = 0.014), but not in 289 

the gill tissue.  No additional significant interactions between thecontent of metals measured in 290 

gill and hepatopancreas were evident when predicting other physiological measurements of 291 

oysters, such as GSH, THC, hemolymph pH or total CO2. 292 

 293 

3.3. Artificial neural network analysis (ANN). 294 

 295 

Because interactions among the metals were detected by linear analysis, ANNs were used 296 

to explore these interactions in predicting LPx (measured as TBARS) in contrast to predicting  297 

GSH in the hepatopancreas and gill.  The three respiratory measurements hemolymph pH, total 298 

CO2 and PO2 were included as input variables because the two acid-base components (pH, total 299 

CO2) responded to tissue contents of all three metals.  ANN models could more reasonably 300 

predict hepatopancreas than gill TBARS based on the metal content of the respective tissues.  301 

The mean R2 value for hepatopancreas TBARS over all the ANN models was 0.50 ± 0.11 (Mean 302 

± SD, n = 30), with some of the values approaching 0.7 (Table 3).  By comparison, the mean R2 303 

value for gill TBARS over all models was 0.35 ± 0.11 (Table 4).  Similarly, the cross-validation 304 

R2 values for models predicting TBARS were 0.53 ± 0.14 (Table 3) and 0.24 ± 0.16 (Table 4) for 305 
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the hepatopancreas and the gills, respectively, confirming the relative validity of the predictions 306 

made by each model.  Furthermore, hepatopancreas TBARS appeared to be more consistently 307 

predictable than gill TBARS, as the variation in R2 and cross-validation R2 values with respect to 308 

the mean in each model were smaller for the hepatopancreas than for the gills (Tables 3, 4). 309 

In contrast, GSH in both the gills and the hepatopancreas was poorly predicted by the 310 

input variables used for ANN modelling.  The mean R2 values for predicting GSH were only 311 

0.07 ± 0.06 (Table 3) and 0.14 ± 0.11 (Table 4) for the gills and the hepatopancreas, respectively.  312 

Likewise, the mean cross-validation R2 values and their variances for models predicting GSH in 313 

both tissue types were very low (Tables 3, 4). 314 

A sensitivity analysis was conducted for the top performing ANNs to determine the 315 

contribution of each of the 6 input variables [hemolymph pH, total CO2, PO2, and tissue (gill or 316 

hepatopancreas) Cu, Cd or Zn] to the overall variance observed in each model predicting tissue 317 

TBARS.  As GSH was poorly predicted by all ANN models in the present study, a sensitivity 318 

analysis was not conducted for these models.  The best performing ANNs had model and cross-319 

validation R2 values greater than the median value for all 30 ANNs.  Models 6 and 7 were chosen 320 

from the ANNs predicting hepatopancreas TBARS (Table 3), while Model 8 was chosen from 321 

ANNs predicting gill TBARS (Table 4).  Sensitivity analysis reveals that in the hepatopancreas, 322 

the partial pressure of oxygen (PO2) in the hemolymph is a dominant variable in both models 323 

(Fig. 4).  Model 6 has the larger mean R2 value.  Model 7 has the larger cross-validation R2 value 324 

and a smaller number of nodes (Table 4) and in most cases we would choose Model 7 over 6 for 325 

these reasons.  However, as Model 6 indicates that Cu is more important than Zn in predicting 326 

TBARS (indicating LPx) and as this model confirms findings from the linear statistical analysis, 327 

we would suggest that this is the preferred ANN model.  Model 6 suggests that LPx in the 328 

hepatopancreas is more sensitive to changes in tissue Cu and Cd, and to hemolymph PO2, than to 329 

any of the other measured variables (Fig. 4). 330 

Sensitivity analysis indicated that each of the input variables contributed to the overall 331 

variance observed in Model 8 in predicting gill TBARS (Fig. 5).  In the gill, as in the 332 

hepatopancreas, it is clear that the degree of oxidative membrane damage is more sensitive to 333 

changes in tissue Cu than to other input variables, but hemolymph pH, total CO2 and PO2 also 334 

make strong contributions to predicting TBARS.  Moreover, summed Cu, Zn and Cd 335 

concentrations in both tissues appear to make significant contributions towards the overall 336 



 12

variance observed in each model, emphasizing the cumulative detrimental effects of these metals 337 

on membrane integrity. 338 

The interactions of the more sensitive input variables (tissue Cu, hemolymph pH and 339 

hemolymph PO2) in predicting TBARS in the gills and the hepatopancreas were graphically 340 

illustrated (Fig. 6A, B) using a modified form of the sensitivity analysis described by Cannon 341 

and McKendry (2002).  Oxidative damage in the gill (TBARS) increased as hemolymph pH and 342 

tissue Cu concentrations increased and the effects are non-linear, but not strongly so (Fig. 6A).  343 

Similarly, hepatopancreas TBARS increased with increasing PO2 in the hemolymph and with 344 

hepatopancreas Cu (Fig. 6B).  These graphical surfaces clearly suggest complex, non-linear 345 

interactions between tissue Cu content and hemolymph pH or PO2 in predicting tissue TBARS.  346 

Furthermore, the overall TBARS response is consistent with an increasingly oxidative 347 

environment. 348 

 349 

4. Discussion 350 

 351 

ANN models generated in the present study demonstrated that the responses of key 352 

toxicological indicators can be modelled and predicted from an appropriate set of input variables.  353 

While linear analyses provided correlative values of some individual metals to changes in 354 

hemolymph gasses and pH, ANN analysis suggested that the level of damage to cellular 355 

membranes was sensitive to tissue content of all three metals and strongly depended on other 356 

physiological measures, such as changes in hemolymph pH and PO2 (Fig. 6).  To our knowledge, 357 

this is the first study to show important metal-metal interactions as well as interactions of metal 358 

content with hemolymph gas and acid-base chemistry in predicting membrane damage in 359 

molluscs.  It is particularly noteworthy that where low tissue Cu is accompanied by low pH or 360 

low PO2 both hepatopancreas and gill manifest the lowest predicted level of TBARS, while in 361 

those tissues with high Cu content along with high pH or high PO2, the reverse is observed (Fig. 362 

6).  This is in keeping with our understanding of the response of TBARS to redox conditions, 363 

and the overall topography of the predicted response clearly suggests a non-linear interaction 364 

between metal content, hemolymph acid-base variables and TBARS.  The contributions of 365 

hemolymph variables to the predictive power of the ANN models as observed in the present 366 

study could be explained by changes in ventilation rate of oysters as function of metal exposure 367 
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or tissue burden, as reported for tropical oysters Crassostrea belcheri exposed to Cu (Elfwing et 368 

al. 2002).  Alternatively, tissue metal burdens may be limited by ventilatory activity in bivalves 369 

as reported for Cd uptake in the Asiatic clam, Corbicula fluminea (Massabuau et al. 2003).   370 

Certainly, the resulting changes in gas exchange and acid-base physiology of oysters could 371 

influence a variety of biochemical processes, including the deposition of shell that is essential to 372 

oyster growth  (Booth et al. 1984; Burnett 1988).  373 

While linear regrssion techniques can generate response-surface plots , they cannot 374 

interrogate non-linear dynamics similar to those in Fig 6 without human intervention specifying 375 

the strucuture of the relationships. The advantage of the ANN’s is that the mathematical 376 

architecture is infinitely flexible and does not require human intervention (eg. bias). The various 377 

models produced by the analysis are not  viewed as solutions, but rather as hypotheses of 378 

relationships amenable to  further empirical tests. 379 

In the present study, Cu, Zn and Cd tissue contents correlated with significant changes in 380 

LPx, as measured by elevated tissue levels of total TBARS.  The influence of transition metals 381 

such as Cu on oxidative processes, resulting in the production of oxyradicals, has been described, 382 

and it is suggested that cupric ions are involved in both the initiation and propagation steps of 383 

LPx (reviewed by Viarengo 1989a).  In fact, increases in LPx following exposure to Cu have 384 

been documented in the hard clam Ruditapes decussatus (Roméo et al. 1997), the Eastern oyster 385 

Crassostrea virginica (Ringwood et al. 1998), and the mussels Mytilus galloprovincialis 386 

(Viarengo et al. 1990) and Mytilus edulis (Geret et al. 2002a).  While excess Cu can mediate free 387 

radical production directly via redox cycling, oxyradicals may also be formed indirectly via 388 

cupric ions binding to and adversely affecting metal-requiring antioxidants, such as GSH and 389 

MT (Ringwood et al. 1999a; Valko et al. 2005).  In fact, it has been strongly suggested that there 390 

are multiple processes that bind copper and reduce its cellular toxicity (Valko et al. 2005).  391 

Conversely, non-redox metals, such as Cd, are unable to generate free radicals directly and 392 

indirectly cause free radical-induced damage to important cellular macromolecules, particularly 393 

various complexes of the electron transport chain in mitochondria, and inhibit important cellular 394 

antioxidant enzymes and proteins, which may, in turn, stimulate LPx through oxidation of 395 

polyunsaturated fatty acids (Stohs et al. 1995a; Stohs et al. 2000; Dorta et al. 2003; Wang et al. 396 

2004).  The inverse association of Zn and Cd with GSH in the hepatopancreas observed in our 397 

study supports the idea that GSH provides early protection against oxidative stress from 398 
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exposure to these metals, by binding of these metals to GSH or inhibition of GHS synthesis by 399 

these metals, until MTs can be induced (Quig 1998; Ringwood et al. 1998).  That this effect was 400 

not noted for Cu in this study supports the notion that Cu ions, which can undergo redox cycling, 401 

are involved in both the initiation and propagation steps of LPx via the direct formation of 402 

reactive oxygen species, whereas Cd and Zn ions, which do not undergo redox cycling, stimulate 403 

LPx indirectly by binding to and inhibiting cellular antioxidants, such as GSH (Viarengo 1989a).  404 

This does not however exclude the possibility of the formation of Cu-GSH complexes, 405 

particularly since –SH groups of most metabolites and enzymes, including GSH, have a higher 406 

affinity for Cu than Cd or Zn (Viarengo 1989b).  In fact, the discovery that the upper limit of 407 

“free” pools of Cu are far less than a single ion per cell strongly suggests that there is significant 408 

overcapacity for chelation of Cu in the cell and that multiple cellular antioxidants exist that bind 409 

Cu (Valko et al. 2005).  However, Ringwood et al. (Ringwood et al. 1998)  suggested that 410 

conditions that cause depletion of important cellular antioxidants, such as GSH and MT, may 411 

enhance pollutant toxicity, suggesting that the impacts of exposure to metal mixtures are 412 

complex and potentially compounding.  Indeed, the significant correlation between tissue 413 

contents of Cd and LPx as well as the general linear model identification of Zn-Cu interactions in 414 

predicting LPx of oysters in the present study supports this notion. 415 

Cd suppresses the activity of many antioxidant enzymes and can displace Cu and Fe from 416 

cytoplasmic and membrane proteins which may then participate in ROS-producing Fenton 417 

reactions (Flipič et al. 2006).  More specifically, Engel (1999) demonstrated that Cu can displace 418 

Cd from MT when oysters are exposed to these trace metals in combination, but that Cd is not 419 

lost from the tissues of the oyster.  Furthermore, it is postulated that MT gene expression in 420 

oysters is regulated via a Zn-sensitive inhibitor, as is the case for regulation of MT gene 421 

expression in mice (Roesijadi 1996).  Although MT induction via the displacement of Zn has yet 422 

to be empirically demonstrated in oysters, it is possible that this sort of metal-metal exchange 423 

reaction is responsible for the Zn-Cu interactions observed in oysters in the present study when 424 

predicting tissue LPx. 425 

The approach of combining general linear models and ANN analysis has revealed 426 

important metal-metal interactions as well as interactions of metal content with hemolymph gas 427 

and acid-base chemistry (hemolymph PO2 as well as pH and total CO2) in predicting peroxidation 428 

of membrane lipids that were not evident from linear analyses.  These results support a growing 429 
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body of evidence implicating the role of heavy metals in the peroxidation of membrane lipids 430 

and the disruption of important cellular antioxidants that play key roles in protecting cells against 431 

oxidative damage.  This study also highlights the usefulness of machine learning approaches, 432 

such as ANNs, for improving our ability to recognize and understand the effects of sub-acute 433 

exposure to environmentally relevant concentrations of mixed contaminants. 434 

 435 
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Tables 443 

Table 1.  Concentrations (µM) of CuCl2, ZnCl2 and CdCl2 added to each beaker during the 27 444 

day oyster metal challenge experiment. 445 

Beaker # Zinc Copper Cadmium 446 
1 0.049 0.000 0.214 447 
2 0.196 0.315 0.000 448 
3 0.306 0.002 0.037 449 
4 1.101 0.066 0.044 450 
5 3.059 0.044 0.010 451 
6 0.000 0.000 0.000 452 
7 2.447 0.050 0.000 453 
8 0.000 0.197 0.013 454 
9 0.092 0.000 0.062 455 
10 0.000 0.000 0.025 456 
11 0.306 0.079 0.000 457 
12 1.835 0.598 0.267 458 
13 1.590 0.787 0.002 459 
14 0.000 0.039 0.004 460 
15 1.223 0.017 0.231 461 
16 2.080 0.000 0.004 462 
17 0.000 0.010 0.006 463 
18 0.000 0.000 0.000 464 
19 0.765 0.000 0.111 465 
20 0.000 0.220 0.400 466 
21 0.040 0.000 0.044 467 
22 0.000 0.000 0.000 468 
23 0.000 0.000 0.302 469 
24 0.979 0.409 0.000 470 
25 0.031 0.008 0.004 471 
26 0.171 0.504 0.178 472 
27 0.428 0.000 0.000 473 
28 0.000 0.252 0.445 474 
29 0.015 0.004 0.125 475 
30 0.012 0.000 0.000 476 
31 0.000 0.000 0.160 477 
32 0.110 0.028 0.016 478 
33 1.468 0.110 0.001 479 
34 2.325 0.007 0.000 480 
35 0.006 0.472 0.320 481 
36 2.753 0.000 0.000 482 
37 0.000 0.003 0.000 483 
38 0.000 0.013 0.338 484 
39 0.000 0.001 0.000 485 
40 2.202 0.000 0.028 486 
41 0.000 0.157 0.007 487 
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42 0.000 0.024 0.356 488 
43 0.003 0.000 0.000 489 
44 0.028 0.283 0.000 490 
45 0.067 0.567 0.007 491 
46 0.000 0.708 0.000 492 
47 0.153 0.006 0.000 493 
48 0.612 0.000 0.089 494 
49 0.000 0.079 0.000 495 
50 1.957 0.629 0.285 496 
51 0.049 0.013 0.142 497 
52 0.257 0.535 0.002 498 
53 0.856 0.378 0.000 499 
54 0.024 0.000 0.022 500 

501 
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Table 2.  Assessment of interactions between metal contents of hepatopancreas when predicting 502 

oxidation damage, measured as TBARS (General Linear Models).  * significant interactions 503 

(P<0.05). 504 

 505 
Effect Coefficient STD Error STD Tolerance t P(2 Tail) 506 

   Coefficient 507 

Constant 2.894 10.174 0.000 .0.284 0.777 508 

Cu 1.309 0.416 1.309 0.045 3.149 0.003* 509 

Zn 0.777 0.399 0.777 0.049 1.949 0.056 510 

Cd -0.043 0.276 -0.043 0.102 -0.156 0.877 511 

Cu*Zn -0.026 0.010 -1.668 0.018 -2.525 0.014* 512 

Cu*Cd -0.004 0.011 -0.207 0.024 -0.360 0.720 513 

Zn*Cd -0.015 0.011 -0.809 0.022 -1.346 0.183 514 

Cu*Zn*Cd 0.00 0.000 1.251 0.011 1.515 0.135 515 

516 
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Table 3.  ANN (n = 30) analysis of TBARS and GSH levels in the hepatopancreas of oysters 517 

exposed to Cu, Zn and/or Cd. 518 

 Lipid Peroxidation (TBARS)    Glutathione (GSH)  519 
Model  # Nodes Model R2 CV R2  #Nodes Model R2 CV R2  520 

1 9 0.4289 0.2652 9 0.1349 0.0866 521 

2 9 0.3715 0.7326 7 0.1441 0.1110 522 

3 5 0.6957 0.3642 5 0.3667 0.1649 523 

4 7 0.5006 0.4938 5 0.0864 0.0328 524 

5 7 0.3917 0.6919 5 0.0720 0.2296 525 

6 7 0.6465 0.4681 7 0.1176 0.1654 526 

7 5 0.6072 0.7002 7 0.3028 0.0688 527 

8 5 0.3979 0.6905 9 0.1172 0.3552 528 

9 7 0.5649 0.7380 6 0.3948 0.0058 529 

10 5 0.6035 0.6459 7 0.0586 0.1656 530 

11 6 0.6075 0.5286 5 0.1056 0.2849 531 

12 5 0.6124 0.6212 11 0.1279 0.3194 532 

13 7 0.4208 0.8799 7 0.1111 0.0151 533 

14 5 0.3779 0.5179 5 0.0775 0.0807 534 

15 5 0.4201 0.6586 7 0.1033 0.2656 535 

16 5 0.4052 0.5568 5 0.3134 0.3727 536 

17 5 0.6587 0.3128 5 0.2803 0.1421 537 

18 5 0.6269 0.4792 5 0.0992 0.1796 538 

19 5 0.2801 0.5103 8 0.1201 0.1013 539 

20 6 0.4136 0.5071 5 0.0255 0.2573 540 

21 5 0.6408 0.3670 9 0.1422 0.0052 541 

22 5 0.3890 0.5743 5 0.3510 0.4110 542 

23 5 0.6245 0.4559 6 0.1006 0.0303 543 

24 5 0.5942 0.4939 7 0.0676 0.0754 544 

25 5 0.4384 0.4662 5 0.1239 0.0052 545 

26 5 0.4184 0.4533 6 0.3116 0.0455 546 

27 7 0.5060 0.5056 5 0.0111 0.0003 547 

28 5 0.4105 0.6626 5 0.0197 0.0169 548 

29 5 0.3373 0.3752 6 0.1104 0.0000 549 

30 7 0.6149 0.2975 5 0.0427 0.0432 550 

Mean 5.8000 0.5002 0.5338 6.3000 0.1480 0.1346 551 
SD 1.2149 0.1178 0.1464 1.6006 0.1100 0.1247552 
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Table 4.  ANN (n = 30) analysis of TBARS and GSH levels in the gills of oysters exposed to 553 

Cu, Zn and/or Cd. 554 

 Lipid Peroxidation (TBARS)  Glutathione (GSH) 555 

Model  #Nodes Model R2 CV R2  #Nodes Model R2  CV R2 556 

1 5 0.2538 0.0007 9 0.0797 0.0154 557 

2 7 0.2423 0.1488 7 0.0179 0.0647 558 

3 7 0.2578 0.4011 9 0.0635 0.0173 559 

4 6 0.2405 0.1909 5 0.0029 0.0504 560 

5 5 0.1802 0.3001 7 0.0314 0.0003 561 

6 7 0.2687 0.4040 7 0.0726 0.0044 562 

7 8 0.3386 0.2644 8 0.0843 0.0459 563 

8 8 0.4818 0.2464 5 0.0471 0.0413 564 

9 7 0.1684 0.0625 10 0.0697 0.0393 565 

10 11 0.4871 0.2322 9 0.2961 0.0250 566 

11 5 0.4528 0.2011 7 0.0223 0.1310 567 

12 6 0.2826 0.4182 7 0.0674 0.0007 568 

13 6 0.4153 0.4901 6 0.0178 0.1964 569 

14 5 0.5444 0.0489 5 0.0526 0.0022 570 

15 7 0.4401 0.1768 5 0.0498 0.1191 571 

16 8 0.3297 0.2637 11 0.0588 0.0771 572 

17 5 0.4234 0.4465 6 0.0650 0.1535 573 

18 7 0.5074 0.1323 6 0.0344 0.0139 574 

19 9 0.3102 0.1496 7 0.1644 0.0249 575 

20 5 0.3989 0.4732 5 0.0346 0.0899 576 

21 8 0.2456 0.3080 7 0.0346 0.0029 577 

22 5 0.3934 0.5798 5 0.0758 0.0025 578 

23 5 0.5077 0.0112 7 0.0554 0.0097 579 

24 5 0.1863 0.2495 5 0.0793 0.0159 580 

25 5 0.3005 0.0058 8 0.0431 0.0394 581 

26 7 0.2522 0.1038 10 0.0694 0.0328 582 

27 9 0.2899 0.3309 11 0.0732 0.0266 583 

28 5 0.2295 0.2209 9 0.1984 0.0519 584 

29 5 0.4402 0.5114 7 0.1516 0.0122 585 

30 5 0.5173 0.0320 8 0.0652 0.1652 586 

Mean 6.4333 0.3462 0.2468 7.2667 0.0726 0.0491 587 

SD 1.5906 0.1139 0.1641 1.8370 0.0597 0.0536 588 

589 
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Figure Legends 590 
Figure 1.  (A) The tissue concentrations of Cu measured in the gill and the hepatopancreas of 591 

Crassostrea virginica held in Cu alone or in combination with other metals for 1 – 27 days.  592 

Total waterborne exposure to Cu (x-axis) is expressed as water concentration of Cu (M) *days 593 

of exposure.    Concentrations of Zn (B) and Cd (C) in the same tissues are displayed as a 594 

function of total waterborne exposure to Zn and Cd, respectively.   595 

 596 

Figure 2.  Box-and-whiskers plots of data from all experimental animals (n = 208) for each 597 

major physiological variable measured in this study.  (A) TBARS and GSH values for the gill 598 

and the hepatopancreas (Hepato), (B) total hemocyte count (THC), (C) hemolymph PO2 and total 599 

CO2, (D) hemolymph pH, and (E) colony-forming units (CFU) mL-1 hemolymph on TSA or 600 

TCBS agar.  Box boundaries indicate 25th and 75th percentile, the line within the box marks the 601 

median value, and whiskers indicate the 10th and 90th percentiles.  All values, including outliers 602 

are depicted. 603 

 604 

Figure 3.  Correlation coefficients (r-values) for significant associations between physiological 605 

measurements and measured metals in (A) the gill and (B) the hepatopancreas of Crassostrea 606 

virginica following exposure to each metal alone and in combinations for a period of 1 – 27 607 

days.  Analysis was performed using the Pearson Product Moment Correlation procedure on rank 608 

transformed data and significance was assigned at P<0.05.  Non-significant interactions are not 609 

shown. 610 

 611 
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Figure 4.  Sensitivities of TBARS in hepatopancreas to the input variables (metal contents, 612 

hemolymph pH, PO2 and total CO2) for the best performing models 6 and 7 from the ANN 613 

analysis. 614 

 615 

Figure 5.  Sensitivities of TBARS in the gill to the input variables (metal contents, hemolymph 616 

pH, PO2 and total CO2) for the best performing model 8 from the ANN analysis. 617 

Figure 6.  Theoretical projections of the response of TBARS to changes in the exposure levels of 618 

the indicated variable on the x and y axes.  All variables have been scaled to their non-parametic 619 

values where 0 indicates the minimum and 1 indicates the maximum values observed in the data. 620 

(see text). 621 
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