92 research outputs found

    Two-loop corrections to the decay rate of parapositronium

    Full text link
    Order α2\alpha^2 corrections to the decay rate of parapositronium are calculated. A QED scattering calculation of the amplitude for electron-positron annihilation into two photons at threshold is combined with the technique of effective field theory to determine an NRQED Hamiltonian, which is then used in a bound state calculation to determine the decay rate. Our result for the two-loop correction is 5.1243(33)5.1243(33) in units of (α/π)2(\alpha/\pi)^2 times the lowest order rate. This is consistent with but more precise than the result 5.1(3)5.1(3) of a previous calculation.Comment: 26 pages, 7 figure

    The DIANA underground accelerator facility project at DUSEL laboratory

    Get PDF
    The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, Colorado School of Mines, Regis University, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory, to build a next generation nuclear astrophysics accelerator facility deep underground. The DIANA accelerator facility is being designed to achieve large laboratory reaction rates by delivering high ion beam currents (up to 100 mA) to a high density (up to 1018 atoms/cm2), super-sonic jet-gas target. The accelerator developments of the DIANA facility are presented here

    Performance of RDMA-capable storage protocols on wide-area network

    No full text
    Because of its high throughput, low CPU utilization, and direct data placement, RDMA (Remote Direct Memory Access) has been adopted for transport in a number of storage protocols, such as NFS and iSCSI. In this presentation, we provide a performance evaluation of RDMA-based NFS and iSCSI on Wide-Area Network (WAN). We show that these protocols, though benefit from RDMA on Local Area Network (LAN) and on WAN of short distance, are faced with a number of challenges to achieve good performance on long distance WAN. This is because of (a) the low performance of RDMA reads on WAN, (b) the small 4 KB chunks used in NFS over RDMA, and(c)the lack of RDMA capability in handling discontinuous data. Our experimental results document the performance behavior of these RDMA-based storage protocols on WAN
    corecore