337 research outputs found

    Dosimetric validation of SmART-RAD Monte Carlo modelling for x-ray cabinet radiobiology irradiators

    Get PDF
    Objective: Accuracy and reproducibility in the measurement of radiation dose and associated reporting are critically important for the validity of basic and preclinical radiobiological studies performed with kilovolt x-ray radiation cabinets. This is essential not only to enable results of radiobiological studies to be repeated, as well as enable valid comparisons between laboratories. In addition, the commonly used single point dose value hides the 3D dose heterogeneity across the irradiated sample. This is particularly true for preclinical rodent models, and is generally difficult to measure directly. Radiation transport simulations integrated in an easy to use application could help researchers improve quality of dosimetry and reporting. Approach: this paper describes the use and dosimetric validation of a newly-developed Monte Carlo (MC) tool, SmART-RAD, to simulate the x-ray field in a range of standard commercial x-ray cabinet irradiators used for preclinical irradiations. Comparisons are made between simulated and experimentally determined dose distributions for a range of configurations to assess the potential use of this tool in determining dose distributions through samples, based on more readily available air-kerma calibration point measurements. Main results: simulations gave very good dosimetric agreement with measured depth dose distributions in phantoms containing both water and bone equivalent materials. Good spatial and dosimetric agreement between simulated and measured dose distributions was obtained when using beam-shaping shielding. Significance: the MC simulations provided by SmART-RAD provide a useful tool to go from a limited number of dosimetry measurements to detailed 3D dose distributions through a non-homogeneous irradiated sample. This is particularly important when trying to determine the dose distribution in more complex geometries. The use of such a tool can improve reproducibility and dosimetry reporting in preclinical radiobiological research

    Optimizing dual energy cone beam CT protocols for preclinical imaging and radiation research

    Get PDF
    Objective: The aim of this work was to investigate whether quantitative dual-energy CT (DECT) imaging is feasible for small animal irradiators with an integrated cone-beam CT (CBCT) system. Methods: The optimal imaging protocols were determined by analyzing different energy combinations and dose levels. The influence of beam hardening effects and the performance of a beam hardening correction (BHC) were investigated. In addition, two systems from different manufacturers were compared in terms of errors in the extracted effective atomic numbers (Z(eff)) and relative electron densities (rho(e)) for phantom inserts with known elemental compositions and relative electron densities. Results: The optimal energy combination was determined to be 50 and 90kVp. For this combination, Z(eff) and r rho(e) can be extracted with a mean error of 0.11 and 0.010, respectively, at a dose level of 60cGy. Conclusion: Quantitative DECT imaging is feasible for small animal irradiators with an integrated CBCT system. To obtain the best results, optimizing the imaging protocols is required. Well-separated X-ray spectra and a sufficient dose level should be used to minimize the error and noise for Z(eff) and rho(e). When no BHC is applied in the image reconstruction, the size of the calibration phantom should match the size of the imaged object to limit the influence of beam hardening effects. No significant differences in Z(eff) and rho(e) errors are observed between the two systems from different manufacturers. Advances in knowledge: This is the first study that investigates quantitative DECT imaging for small animal irradiators with an integrated CBCT system

    A novel data management platform to improve image-guided precision preclinical biological research

    Get PDF
    Objective: Preclinical biological research is mandatory for developing new drugs to investigate the toxicity and efficacy of the drug. In this paper, the focus is on radiobiological research as an example of advanced preclinical biological research. In radiobiology, recent technological advances have produced novel research platforms which can precisely irradiate targets in animals and use advanced onboard image-guidance, mimicking the clinical radiotherapy environment. These platforms greatly facilitate complex research combining several agents simultaneously (in our example, radiation and non-radiation agents). Since these modern platform can produce a large amount of wide-ranging data, one of the main impediments in preclinical research platforms is a proper data management system for preclinical studies. Methods: A preclinical data management system, inspired by current radiotherapy clinical data management systems was designed. The system was designed with InterSystems technology, i.e. a programmable Enterprise Service Bus solution. New DICOM animal imaging standards are used such as DICOM suppl. 187 for storing small animal acquisition context and the DICOM second generation course model. Results: A small animal big data warehouse environment for research is designed to work with modern image-guided precision research platforms. Its modular design includes (1) a study workflow manager, (2) a data manager, and (3) a storage manager. The system provides interfaces to, e.g. preclinical treatment planning systems and data analysis plug-ins, and guides the user efficiently through the many steps involved in preclinical research. The system manages various data source locations, and arranges access to the data centrally. Conclusion: A novel preclinical data management system can be designed to improve preclinical workflow, facilitate data exchange between researchers, and support translation to clinical trials. Advances in knowledge: A preclinical data management system such as the one proposed here would greatly benefit preparation, execution and analysis of biological experiments, and will eventually facilitate translation to clinical trials

    Image quality evaluation of a new high-performance ring-gantry cone-beam computed tomography imager

    Get PDF
    Objective. Newer cone-beam computed tomography (CBCT) imaging systems offer reconstruction algorithms including metal artifact reduction (MAR) and extended field-of-view (eFoV) techniques to improve image quality. In this study a new CBCT imager, the new Varian HyperSight CBCT, is compared to fan-beam CT and two CBCT imagers installed in a ring-gantry and C-arm linear accelerator, respectively. Approach. The image quality was assessed for HyperSight CBCT which uses new hardware, including a large-size flat panel detector, and improved image reconstruction algorithms. The decrease of metal artifacts was quantified (structural similarity index measure (SSIM) and root-mean-squared error (RMSE)) when applying MAR reconstruction and iterative reconstruction for a dental and spine region using a head-and-neck phantom. The geometry and CT number accuracy of the eFoV reconstruction was evaluated outside the standard field-of-view (sFoV) on a large 3D-printed chest phantom. Phantom size dependency of CT numbers was evaluated on three cylindrical phantoms of increasing diameter. Signal-to-noise and contrast-to-noise were quantified on an abdominal phantom. Main results. In phantoms with streak artifacts, MAR showed comparable results for HyperSight CBCT and CT, with MAR increasing the SSIM (0.97-0.99) and decreasing the RMSE (62-55 HU) compared to iterative reconstruction without MAR. In addition, HyperSight CBCT showed better geometrical accuracy in the eFoV than CT (Jaccard Conformity Index increase of 0.02-0.03). However, the CT number accuracy outside the sFoV was lower than for CT. The maximum CT number variation between different phantom sizes was lower for the HyperSight CBCT imager (∼100 HU) compared to the two other CBCT imagers (∼200 HU), but not fully comparable to CT (∼50 HU). Significance. This study demonstrated the imaging performance of the new HyperSight CBCT imager and the potential of applying this CBCT system in more advanced scenarios by comparing the quality against fan-beam CT.</p

    Image quality evaluation of a new high-performance ring-gantry cone-beam computed tomography imager

    Get PDF
    Objective. Newer cone-beam computed tomography (CBCT) imaging systems offer reconstruction algorithms including metal artifact reduction (MAR) and extended field-of-view (eFoV) techniques to improve image quality. In this study a new CBCT imager, the new Varian HyperSight CBCT, is compared to fan-beam CT and two CBCT imagers installed in a ring-gantry and C-arm linear accelerator, respectively. Approach. The image quality was assessed for HyperSight CBCT which uses new hardware, including a large-size flat panel detector, and improved image reconstruction algorithms. The decrease of metal artifacts was quantified (structural similarity index measure (SSIM) and root-mean-squared error (RMSE)) when applying MAR reconstruction and iterative reconstruction for a dental and spine region using a head-and-neck phantom. The geometry and CT number accuracy of the eFoV reconstruction was evaluated outside the standard field-of-view (sFoV) on a large 3D-printed chest phantom. Phantom size dependency of CT numbers was evaluated on three cylindrical phantoms of increasing diameter. Signal-to-noise and contrast-to-noise were quantified on an abdominal phantom. Main results. In phantoms with streak artifacts, MAR showed comparable results for HyperSight CBCT and CT, with MAR increasing the SSIM (0.97-0.99) and decreasing the RMSE (62-55 HU) compared to iterative reconstruction without MAR. In addition, HyperSight CBCT showed better geometrical accuracy in the eFoV than CT (Jaccard Conformity Index increase of 0.02-0.03). However, the CT number accuracy outside the sFoV was lower than for CT. The maximum CT number variation between different phantom sizes was lower for the HyperSight CBCT imager (∼100 HU) compared to the two other CBCT imagers (∼200 HU), but not fully comparable to CT (∼50 HU). Significance. This study demonstrated the imaging performance of the new HyperSight CBCT imager and the potential of applying this CBCT system in more advanced scenarios by comparing the quality against fan-beam CT.</p

    One-class Gaussian process regressor for quality assessment of transperineal ultrasound images

    Get PDF
    The use of ultrasound guidance in prostate cancer radiotherapy workflows is not widespread. This can be partially attributed to the need for image interpretation by a trained operator during ultrasound image acquisition. In this work, a one-class regressor, based on DenseNet and Gaussian processes, was implemented to assess automatically the quality of transperineal ultrasound images of the male pelvic region. The implemented deep learning approach achieved a scoring accuracy of 94%, a specificity of 95% and a sensitivity of 93% with respect to the majority vote of three experts, which was comparable with the results of these experts. This is the first step towards a fully automatic workflow, which could potentially remove the need for image interpretation and thereby make the use of ultrasound imaging, which allows real-time volumetric organ tracking in the RT environment, more appealing for hospitals

    An orthotopic non-small cell lung cancer model for image-guided small animal radiotherapy platforms

    Get PDF
    Objective: Lung cancer is the deadliest cancer worldwide. To increase treatment potential for lung cancer, pre-clinical models that allow testing and follow up of clinically relevant treatment modalities are essential. Therefore, we developed a single-nodule-based orthotopic non-small cell lung cancer tumor model which can be monitored using multimodal non-invasive imaging to select the optimal image-guided radiation treatment plan. Methods: An orthotopic non-small cell lung cancer model in NMRI-nude mice was established to investigate the complementary information acquired from 80 kVp microcone-beam CT (micro-CBCT) and bioluminescence imaging (BLI) using different angles and filter settings. Different micro-CBCT-based radiation-delivery plans were evaluated based on their dose-volume histogram metrics of tumor and organs at risk to select the optimal treatment plan. Results: H1299 cell suspensions injected directly into the lung render exponentially growing single tumor nodules whose CBCT-based volume quantification strongly correlated with BLI-integrated intensity. Parallel-opposed single angle beam plans through a single lung are preferred for smaller tumors, whereas for larger tumors, plans that spread the radiation dose across healthy tissues are favored. Conclusions: Closely mimicking a clinical setting for lung cancer with highly advanced preclinical radiation treatment planning is possible in mice developing orthotopic lung tumors. Advances in knowledge: BLI and CBCT imaging of orthotopic lung tumors provide complementary information in a temporal manner. The optimal radiotherapy plan is tumor volume-dependent
    corecore