27 research outputs found

    Musculoskeletal models of a human and bonobo finger: parameter identification and comparison to in vitro experiments

    Get PDF
    Introduction: Knowledge of internal finger loading during human and non-human primate activities such as tool use or knuckle-walking has become increasingly important to reconstruct the behaviour of fossil hominins based on bone morphology. Musculoskeletal models have proven useful for predicting these internal loads during human activities, but load predictions for non-human primate activities are missing due to a lack of suitable finger models. The main goal of this study was to implement both a human and a representative non-human primate finger model to facilitate comparative studies on metacarpal bone loading. To ensure that the model predictions are sufficiently accurate, the specific goals were: (1) to identify species-specific model parameters based on in vitro measured fingertip forces resulting from single tendon loading and (2) to evaluate the model accuracy of predicted fingertip forces and net metacarpal bone loading in a different loading scenario. Materials & Methods: Three human and one bonobo (Pan paniscus) fingers were tested in vitro using a previously developed experimental setup. The cadaveric fingers were positioned in four static postures and load was applied by attaching weights to the tendons of the finger muscles. For parameter identification, fingertip forces were measured by loading each tendon individually in each posture. For the evaluation of model accuracy, the extrinsic flexor muscles were loaded simultaneously and both the fingertip force and net metacarpal bone force were measured. The finger models were implemented using custom Python scripts. Initial parameters were taken from literature for the human model and own dissection data for the bonobo model. Optimized model parameters were identified by minimizing the error between predicted and experimentally measured fingertip forces. Fingertip forces and net metacarpal bone loading in the combined loading scenario were predicted using the optimized models and the remaining error with respect to the experimental data was evaluated. Results. The parameter identification procedure led to minor model adjustments but considerably reduced the error in the predicted fingertip forces (root mean square error reduced from 0.53/0.69 N to 0.11/0.20 N for the human/bonobo model). Both models remained physiologically plausible after the parameter identification. In the combined loading scenario, fingertip and net metacarpal forces were predicted with average directional errors below 6◦ and magnitude errors below 12%. Conclusions. This study presents the first attempt to implement both a human and nonhuman primate finger model for comparative palaeoanthropological studies. The good agreement between predicted and experimental forces involving the action of extrinsic flexors—which are most relevant for forceful grasping—shows that the models are likely sufficiently accurate for comparisons of internal loads occurring during human and non-human primate manual activities

    MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision

    Full text link
    Prior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today, MedShapeNet includes 23 dataset with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present use cases in the fields of classification of brain tumors, facial and skull reconstructions, multi-class anatomy completion, education, and 3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and https://github.com/Jianningli/medshapenet-feedbackComment: 16 page

    The effect of orthoses on the kinematics of the trapeziometacarpal, scaphotrapeziotrapezoidal, and radioscaphoid joints

    No full text
    The in vivo effect of four different types of thumb and thumb-wrist orthoses on the three-dimensional kinematics of the trapeziometacarpal (TMC), scaphotrapeziotrapezoidal (STT) and radioscaphoid joints was quantified using computed tomography (CT). Eighteen healthy female volunteers were recruited. The dominant hand of each subject was scanned in four thumb and wrist positions, each in three conditions: without orthosis, with a thumb orthosis (Push Ortho and immediate fitting, IMF) and with a thumb-wrist orthosis (Ligaflex Manu and IMF). CT images were analyzed and rotations relative to the more proximal bone were expressed in a joint-specific coordinate system. Without orthosis, the largest STT rotations were observed during radioulnar deviation of the wrist and the STT range of motion (ROM) was significantly lower during wrist flexion-extension. All tested orthoses caused a significant reduction of the ROM at each joint compared to free motion. Significant differences in movement reduction were observed between prefabricated and IMF orthoses.The IMF thumb-wrist outperformed the Ligaflex Manu in terms of immobilization of the radioscaphoid joint. In addition, the IMF thumb orthosis immobilized the TMC joint significantly better during thumb abduction and adduction than the Push Ortho. We found that different types of thumb and thumb-wrist orthotics are effective in reducing joint mobility. While this reduction tends to be higher using IMF compared to prefabricated orthoses, this effect is only significant for the radioscaphoid and TMC joint. The finding that thumb movements do not induce large STT rotations suggests that the thumb does not need to be immobilized in case of isolated STT osteoarthritis.status: publishe

    One step beyond: Different step-to-step transitions exist during continuous contact brachiation in siamangs

    Get PDF
    Summary In brachiation, two main gaits are distinguished, ricochetal brachiation and continuous contact brachiation. During ricochetal brachiation, a flight phase exists and the body centre of mass (bCOM) describes a parabolic trajectory. For continuous contact brachiation, where at least one hand is always in contact with the substrate, we showed in an earlier paper that four step-to-step transition types occur. We referred to these as a ‘point’, a ‘loop’, a ‘backward pendulum’ and a ‘parabolic’ transition. Only the first two transition types have previously been mentioned in the existing literature on gibbon brachiation. In the current study, we used three-dimensional video and force analysis to describe and characterize these four step-to-step transition types. Results show that, although individual preference occurs, the brachiation strides characterized by each transition type are mainly associated with speed. Yet, these four transitions seem to form a continuum rather than four distinct types. Energy recovery and collision fraction are used as estimators of mechanical efficiency of brachiation and, remarkably, these parameters do not differ between strides with different transition types. All strides show high energy recoveries (mean  = 70±11.4%) and low collision fractions (mean  = 0.2±0.13), regardless of the step-to-step transition type used. We conclude that siamangs have efficient means of modifying locomotor speed during continuous contact brachiation by choosing particular step-to-step transition types, which all minimize collision fraction and enhance energy recovery

    The forearm and hand musculature of semi-terrestrial rhesus macaques (Macaca mulatta) and arboreal gibbons (Fam. Hylobatidae). Part I. Description and comparison of the muscle configuration

    No full text
    Primates live in very diverse environments and, as a consequence, show an equally diverse locomotor behaviour. During locomotion, the primate hand interacts with the superstrate and/or substrate and will therefore probably show adaptive signals linked with this locomotor behaviour. Whereas the morphology of the forearm and hand bones have been studied extensively, the functional adaptations in the hand musculature have been documented only scarcely. To evaluate whether there are potential adaptations in forelimb musculature to locomotor behaviour, we investigated the forearm and hand musculature of the highly arboreal gibbons (including Hylobates lar, Hylobates pileatus, Nomascus leucogenys, Nomascus concolor, Symphalangus syndactylus) and compared this with the musculature of the semi-terrestrial rhesus macaques (Macaca mulatta) by performing complete and detailed dissections on a sample of 15 unembalmed specimens. We found that the overall configuration of the upper arm and hand musculature is highly comparable between arboreal gibbons and semi-terrestrial macaques, and follows the general primate condition. Most of the identified differences in muscle configuration are located in the forearm. In macaques, a prominent m. epitrochleoanconeus is present, which potentially helps to extend the forearm and/or stabilize the elbow joint during quadrupedal walking. The m. flexor carpi radialis shows a more radial insertion in gibbons, which might be advantageous during brachiation, as it can aid radial deviation. The fingers of macaques are controlled in pairs by the m. extensor digiti secondi et tertii proprius and the m. extensor digiti quarti et quinti proprius-a similar organization can also be found in their flexors-which might aid in efficient positioning of the hand and fingers on uneven substrates during quadrupedal walking. In contrast, extension of the little finger in gibbons is controlled by a separate m. extensor digiti minimi, whereas digits 2 to 4 are extended by the m. extensor digitorum brevis, suggesting that simultaneous extension of digits 2-4 in gibbons might be important when reaching or grasping an overhead support during brachiation. In conclusion, the overall configuration of the forelimb and hand musculature is very similar in gibbons and macaques, with some peculiarities which can be linked to differences in forelimb function and which might be related to the specific locomotor behaviour of each group.status: publishe

    Functional anatomy of the gibbon forelimb: adaptations to a brachiating lifestyle

    No full text
    It has been shown that gibbons are able to brachiate with very low mechanical costs. The conversion of muscle activity into smooth, purposeful movement of the limb depends on the morphometry of muscles and their mechanical action on the skeleton. Despite the gibbon's reputation for excellence in brachiation, little information is available regarding either its gross musculoskeletal anatomy or its more detailed muscle–tendon architecture. We provide quantitative anatomical data on the muscle–tendon architecture (muscle mass, physiological cross-sectional area, fascicle length and tendon length) of the forelimb of four gibbon species, collected by detailed dissections of unfixed cadavers. Data are compared between different gibbon species and with similar published data of non-brachiating primates such as macaques, chimpanzees and humans. No quantitative differences are found between the studied gibbon species. Both their forelimb anatomy and muscle dimensions are comparable when normalized to the same body mass. Gibbons have shoulder flexors, extensors, rotator muscles and elbow flexors with a high power or work-generating capacity and their wrist flexors have a high force-generating capacity. Compared with other primates, the elbow flexors of gibbons are particularly powerful, suggesting that these muscles are particularly important for a brachiating lifestyle. Based on this anatomical study, the shoulder flexors, extensors, rotator muscles, elbow flexors and wrist flexors are expected to contribute the most to brachiation

    Muscle moment arms and function of the siamang forelimb during brachiation

    No full text
    Moment arms have an important modulating impact on muscle function, as they represent the capacity of the muscle to convert muscle action into limb movements. In the current paper, we provide muscle moment arm data of the forelimb of four siamangs, collected by detailed dissections on unfixed cadavers. The aim of this study is to assess the role of different forelimb muscles during brachiation. Moment arm data are compared with similar published data of non-brachiating primates such as macaques, chimpanzees and humans. Our data show that shoulder adductors and endorotators and the elbow flexors are built for force generation, whereas the shoulder abductors, flexors and exorotators are best suited to gain speed and to change direction. Compared to non-brachiating species, both elbow and wrist flexors are particularly noticeable in terms of moment of force-generating capacity. However, the moment of force-generating capacity of the elbow extensor is not negligible, which indicates that the triceps also plays an active role, especially at the end of the support phase. Except for the elbow flexors, all muscles reach their maximum moment of force-generating capacity during the support phase of brachiation. When brachiating on a more complex setup, the siamang will flex the elbows to angles that induce maximum moment arms as well
    corecore