44 research outputs found

    mRNA in cancer immunotherapy : beyond a source of antigen

    Get PDF
    mRNA therapeutics have become the focus of molecular medicine research. Various mRNA applications have reached major milestones at high speed in the immuno-oncology field. This can be attributed to the knowledge that mRNA is one of nature's core building blocks carrying important information and can be considered as a powerful vector for delivery of therapeutic proteins to the patient.For a long time, the major focus in the use of in vitro transcribed mRNA was on development of cancer vaccines, using mRNA encoding tumor antigens to modify dendritic cells ex vivo. However, the versatility of mRNA and its many advantages have paved the path beyond this application. In addition, due to smart design of both the structural properties of the mRNA molecule as well as pharmaceutical formulations that improve its in vivo stability and selective targeting, the therapeutic potential of mRNA can be considered as endless.As a consequence, many novel immunotherapeutic strategies focus on the use of mRNA beyond its use as the source of tumor antigens. This review aims to summarize the state-of-the-art on these applications and to provide a rationale for their clinical application

    Broadening the message : a nanovaccine co-loaded with messenger RNA and α-GalCer induces antitumor immunity through conventional and natural killer T cells

    Get PDF
    Messenger RNA encoding tumor antigens has the potential to evoke effective antitumor immunity. This study reports on a nanoparticle platform, named mRNA Galsomes, that successfully co-delivers nucleoside-modified antigen-encoding mRNA and the glycolipid antigen and immunopotentiator α-galactosylceramide (α-GC) to antigen-presenting cells after intravenous administration. By co-formulating low doses of α-GC, mRNA Galsomes induce a pluripotent innate and adaptive tumor-specific immune response in mice, with invariant natural killer T cells (iNKT) as a driving force. In comparison, mRNA Galsomes exhibit advantages over the state-of-the-art cancer vaccines using unmodified ovalbumin (OVA)-encoding mRNA, as we observed up to seven times more tumor-infiltrating antigen-specific cytotoxic T cells, combined with a strong iNKT cell and NK cell activation. In addition, the presence of suppressive myeloid cells (myeloid-derived suppressor cells and tumor-associated macrophages) in the tumor microenvironment was significantly lowered. Owing to these antitumor effects, OVA mRNA Galsomes significantly reduced tumor growth in established E.G7-OVA lymphoma, with a complete tumor rejection in 40% of the animals. Moreover, therapeutic vaccination with mRNA Galsomes enhanced the responsiveness to treatment with a PD-L1 checkpoint inhibitor in B16-OVA melanoma, as evidenced by a synergistic reduction of tumor outgrowth and a significantly prolonged median survival. Taken together, these data show that intravenously administered mRNA Galsomes can provide controllable, multifaceted, and effective antitumor immunity, especially when combined with checkpoint inhibition

    Covipendium : information available to support the development of medical countermeasures and interventions against COVID-19

    Get PDF
    The living paper on the new coronavirus disease (COVID-19) provides a structured compilation of scientific data about the virus, the disease and its control. Its objective is to help scientists identify the most relevant publications on COVID-19 in the mass of information that appears every day. It is also expected to foster a global understanding of disease control and stimulate transdisciplinary initiatives

    Particle-mediated intravenous delivery of antigen mRNA results in strong antigen-specific T-cell responses despite the induction of type I interferon

    Get PDF
    Cancer vaccines based on mRNA are extensively studied. The fragile nature of mRNA has instigated research into carriers that can protect it from ribonucleases and as such enable its systemic use. However, carrier-mediated delivery of mRNA has been linked to production of type I interferon (IFN) that was reported to compromise the effectiveness of mRNA vaccines. In this study, we evaluated a cationic lipid for encapsulation of mRNA. The nanometer-sized, negatively charged lipid mRNA particles (LMPs) efficiently transfected dendritic cells and macrophages in vitro. Furthermore, i.v. delivery of LMPs resulted in rapid expression of the mRNA-encoded protein in spleen and liver, predominantly in CD11c+ cells and to a minor extent in CD11b+ cells. Intravenous immunization of mice with LMPs containing ovalbumin, human papilloma virus E7, and tyrosinase related protein-2 mRNA, either combined or separately, elicited strong antigen-specific T-cell responses. We further showed the production of type I IFNs upon i.v. LMP delivery. Although this decreased the expression of the mRNA-encoded protein, it supported the induction of antigen-specific T-cell responses. These data question the current notion that type I IFNs hamper particle-mediated mRNA vaccines

    mRNA-lipid nanoparticle COVID-19 vaccines : structure and stability

    Get PDF
    A drawback of the current mRNA-lipid nanoparticle (LNP) COVID-19 vaccines is that they have to be stored at (ultra)low temperatures. Understanding the root cause of the instability of these vaccines may help to rationally improve mRNA-LNP product stability and thereby ease the temperature conditions for storage. In this review we discuss proposed structures of mRNA-LNPs, factors that impact mRNA-LNP stability and strategies to optimize mRNA-LNP product stability. Analysis of mRNA-LNP structures reveals that mRNA, the ionizable cationic lipid and water are present in the LNP core. The neutral helper lipids are mainly positioned in the outer, encapsulating, wall. mRNA hydrolysis is the determining factor for mRNA-LNP instability. It is currently unclear how water in the LNP core interacts with the mRNA and to what extent the degradation prone sites of mRNA are protected through a coat of ionizable cationic lipids. To improve the stability of mRNA-LNP vaccines, optimization of the mRNA nucleotide composition should be prioritized. Secondly, a better understanding of the milieu the mRNA is exposed to in the core of LNPs may help to rationalize adjustments to the LNP structure to preserve mRNA integrity. Moreover, drying techniques, such as lyophilization, are promising options still to be explored

    mRNA encoding a bispecific single domain antibody construct protects against influenza A virus infection in mice

    Get PDF
    To date, mRNA-based biologics have mainly been developed for prophylactic and therapeutic vaccination to combat infectious diseases or cancer. In the past years, optimization of the characteristics of in vitro transcribed mRNA has led to significant reduction of the inflammatory responses. Thanks to this, mRNA therapeutics have entered the field of passive immunization. Here, we established an mRNA treatment that is based on mRNA that codes for a bispecific single-domain antibody construct that can selectively recruit innate immune cells to cells infected with influenza A virus. The constructs consist of a single-domain antibody that binds to the ectodomain of the conserved influenza A matrix protein 2, while the other single-domain antibody binds to the activating mouse Fc gamma receptor IV. Formulating the mRNA into DOTAP (1,2-dioleoyl-3trimethylammonium-propane)/cholesterol nanoparticles and delivering these intratracheally to mice allowed the production of the bispecific single-domain antibody in the lungs, and administration of these mRNA-particles prior to influenza A virus infection was associated with a significant reduction in viral titers and a reduced morbidity in mice. Overall, our data provide evidence that the local delivery of mRNA encoding a bispecific single-domain antibody format in the lungs could be a promising pulmonary antiviral prophylactic treatment

    Intracellular delivery of mRNA in adherent and suspension cells by vapor nanobubble photoporation

    Get PDF
    Efficient and safe cell engineering by transfection of nucleic acids remains one of the long-standing hurdles for fundamental biomedical research and many new therapeutic applications, such as CAR T cell-based therapies. mRNA has recently gained increasing attention as a more safe and versatile alternative tool over viral- or DNA transposon-based approaches for the generation of adoptive T cells. However, limitations associated with existing nonviral mRNA delivery approaches hamper progress on genetic engineering of these hard-to-transfect immune cells. In this study, we demonstrate that gold nanoparticle-mediated vapor nanobubble (VNB) photoporation is a promising upcoming physical transfection method capable of delivering mRNA in both adherent and suspension cells. Initial transfection experiments on HeLa cells showed the importance of transfection buffer and cargo concentration, while the technology was furthermore shown to be effective for mRNA delivery in Jurkat T cells with transfection efficiencies up to 45%. Importantly, compared to electroporation, which is the reference technology for nonviral transfection of T cells, a fivefold increase in the number of transfected viable Jurkat T cells was observed. Altogether, our results point toward the use of VNB photoporation as a more gentle and efficient technology for intracellular mRNA delivery in adherent and suspension cells, with promising potential for the future engineering of cells in therapeutic and fundamental research applications

    Longitudinal in vivo assessment of host-microbe interactions in a murine model of pulmonary aspergillosis

    Get PDF
    The fungus Aspergillus fumigatus is ubiquitous in nature and the most common cause of invasive pulmonary aspergillosis (IPA) in patients with a compromised immune system. The development of IPA in patients under immunosuppressive treatment or in patients with primary immunodeficiency demonstrates the importance of the host immune response in controlling aspergillosis. However, study of the host-microbe interaction has been hampered by the lack of tools for their non-invasive assessment. We developed a methodology to study the response of the host's immune system against IPA longitudinally in vivo by using fluorine-19 magnetic resonance imaging (F-19 MRI). We showed the advantage of a perfluorocarbon-based contrast agent for the in vivo labeling of macrophages and dendritic cells, permitting quantification of pulmonary inflammation in different murine IPA models. Our findings reveal the potential of F-19 MRI for the assessment of rapid kinetics of innate immune response against IPA and the permissive niche generated through immunosuppression
    corecore