184 research outputs found
Overview of the influences of mining-related pollution on the water quality of the Mooi River system’s reservoirs, using basic statistical analyses and self organised mapping
The Mooi River catchment, in particular the Wonderfonteinspruit (WFS), has been the subject of a large number of studies regarding significant pollution sources, generally attributed to mining in the area. However, very little is known about the hydrochemistry of the surface water of the Klerkskraal, Boskop and Potchefstroom Dams in the Mooi River catchment. The aim of this study was to identify any hydro-chemical changes that occurred in the water quality of Klerkskraal, Boskop and Potchefstroom Dams during the period 1995 to 2010. Self-organised mapping (SOM) of the data emphasized the influence of mining-related effluents on the quality of the freshwater resources of the Boskop Dam and Potchefstroom Damrelative to Klerkskraal Dam which is located upstream of mining-related influences and which could therefore serve as a reference site. High concentrations of SO4 together with high electrical conductivity (EC) and total dissolved solids (TDS) values were evident in these dams as compared to Klerkskraal Dam. Concentrations of nutrients such as PO4, NH4 and NO3+NO2 were however low in all three reservoirs. In Klerkskraal Dam, which is situated above the confluence of the WFS, a strong direct relationship between EC and total alkalinity (TAL) was exhibited. This suggests that Klerkskraal Dam is still a water source displaying natural unpolluted conditions, where increases in EC, TDS and TAL can be explained by natural dissolution of the bedrock. Boskop Dam presents a dam impacted by pollutants with no direct correlation between EC and TAL. During the current study both SO4 concentrations as well as Na+ concentrations exhibited a decline from 1995 until 2010 in Boskop Dam. This suggests that, although Boskop Dam still carries the burden of mining pollution via the WFS, the pollution levels of the freshwater of Boskop Dam have decreased between 1995 and 2010.Keywords: self-organised mapping, water quality, electrical conductivity, alkalinity, sulphates, Boskop Dam, Potchefstroom Dam, Klerkskraal Dam, Wonderfonteinsprui
Analysis of BAC-end sequences in rainbow trout: Content characterization and assessment of synteny between trout and other fish genomes
<p>Abstract</p> <p>Background</p> <p>Rainbow trout (<it>Oncorhynchus mykiss</it>) are cultivated worldwide for aquaculture production and are widely used as a model species to gain knowledge of many aspects of fish biology. The common ancestor of the salmonids experienced a whole genome duplication event, making extant salmonids such as the rainbow trout an excellent model for studying the evolution of tetraploidization and re-diploidization in vertebrates. However, the lack of a reference genome sequence hampers research progress for both academic and applied purposes. In order to enrich the genomic tools already available in this species and provide further insight on the complexity of its genome, we sequenced a large number of rainbow trout BAC-end sequences (BES) and characterized their contents.</p> <p>Results</p> <p>A total of 176,485 high quality BES, were generated, representing approximately 4% of the trout genome. BES analyses identified 6,848 simple sequence repeats (SSRs), of which 3,854 had high quality flanking sequences for PCR primers design. The first rainbow trout repeat elements database (INRA RT rep1.0) containing 735 putative repeat elements was developed, and identified almost 59.5% of the BES database in base-pairs as repetitive sequence. Approximately 55% of the BES reads (97,846) had more than 100 base pairs of contiguous non-repetitive sequences. The fractions of the 97,846 non-repetitive trout BES reads that had significant BLASTN hits against the zebrafish, medaka and stickleback genome databases were 15%, 16.2% and 17.9%, respectively, while the fractions of the non-repetitive BES reads that had significant BLASTX hits against the zebrafish, medaka, and stickleback protein databases were 10.7%, 9.5% and 9.5%, respectively. Comparative genomics using paired BAC-ends revealed several regions of conserved synteny across all the fish species analyzed in this study.</p> <p>Conclusions</p> <p>The characterization of BES provided insights on the rainbow trout genome. The discovery of specific repeat elements will facilitate analyses of sequence content (e.g. for SNPs discovery and for transcriptome characterization) and future genome sequence assemblies. The numerous microsatellites will facilitate integration of the linkage and physical maps and serve as valuable resource for fine mapping QTL and positional cloning of genes affecting aquaculture production traits. Furthermore, comparative genomics through BES can be used for identifying positional candidate genes from QTL mapping studies, aid in future assembly of a reference genome sequence and elucidating sequence content and complexity in the rainbow trout genome.</p
Allergy education and training for physicians.
The increasing prevalence of allergic diseases has placed a significant burden on global healthcare and society as whole. This has necessitated a rapid development of "allergy" as a specialist area. However, as allergy is so common and, for most, relatively easy to diagnose and control, all clinicians need to have basic knowledge and competence to manage mild disease and recognize when referral is required. The allergology specialty has not yet been recognized in many countries and even where allergy is fully recognized as a specialty, the approach to training in allergy differs significantly. In the light of recent developments in allergy diagnosis and management, there is an urgent need to harmonize core competences for physicians, as well as the standardization of core principles for medical education and post-graduate training in allergy. All physicians and allied health professionals must appreciate the multidisciplinary team (MDT) approach to allergy, which is key to achieving the highest standards in holistic care. Due to worldwide variation in resources and personnel, some MDT roles will need to be absorbed by the treating physician or other healthcare professionals. We draw particular attention to the role of psychological input for all allergy patients, dietetic input in the case of food allergy and patient education to support all patients in the supported self-management of their condition on a daily basis. A strong appreciation of these multidisciplinary aspects will help physicians provide quality patient-centered care. We consider that harmonization of allergy components within undergraduate curricula is crucial to ensure all physicians develop the appropriate allergy-related knowledge and skills, particularly in light of inconsistencies seen in the primary care management of allergy. This review from the World Allergy Organization (WAO) Education and Training Committee also outlines allergy-related competences required of physicians working with allergic patients and provides recommendations to promote harmonization of allergy training and practice worldwide
Genome Desertification in Eutherians: Can Gene Deserts Explain the Uneven Distribution of Genes in Placental Mammalian Genomes?
The evolution of genome size as well as structure and organization of genomes belongs among the key questions of genome biology. Here we show, based on a comparative analysis of 30 genomes, that there is generally a tight correlation between the number of genes per chromosome and the length of the respective chromosome in eukaryotic genomes. The surprising exceptions to this pattern are placental mammalian genomes. We identify the number and, more importantly, the uneven distribution of gene deserts among chromosomes, i.e., long (>500 kb) stretches of DNA that do not encode for genes, as the main contributing factor for the observed anomaly of eutherian genomes. Gene-rich placental mammalian chromosomes have smaller proportions of gene deserts and vice versa. We show that the uneven distribution of gene deserts is a derived character state of eutherians. The functional and evolutionary significance of this particular feature of eutherian genomes remains to be explained
Composition Influences the Pathway but not the Outcome of the Metabolic Response of Bacterioplankton to Resource Shifts
Bacterioplankton community metabolism is central to the functioning of aquatic ecosystems, and strongly reactive to changes in the environment, yet the processes underlying this response remain unclear. Here we explore the role that community composition plays in shaping the bacterial metabolic response to resource gradients that occur along aquatic ecotones in a complex watershed in Québec. Our results show that the response is mediated by complex shifts in community structure, and structural equation analysis confirmed two main pathways, one involving adjustments in the level of activity of existing phylotypes, and the other the replacement of the dominant phylotypes. These contrasting response pathways were not determined by the type or the intensity of the gradients involved, as we had hypothesized, but rather it would appear that some compositional configurations may be intrinsically more plastic than others. Our results suggest that community composition determines this overall level of community plasticity, but that composition itself may be driven by factors independent of the environmental gradients themselves, such that the response of bacterial communities to a given type of gradient may alternate between the adjustment and replacement pathways. We conclude that community composition influences the pathways of response in these bacterial communities, but not the metabolic outcome itself, which is driven by the environment, and which can be attained through multiple alternative configurations
Efficient Cellular Release of Rift Valley Fever Virus Requires Genomic RNA
The Rift Valley fever virus is responsible for periodic, explosive epizootics throughout sub-Saharan Africa. The development of therapeutics targeting this virus is difficult due to a limited understanding of the viral replicative cycle. Utilizing a virus-like particle system, we have established roles for each of the viral structural components in assembly, release, and virus infectivity. The envelope glycoprotein, Gn, was discovered to be necessary and sufficient for packaging of the genome, nucleocapsid protein and the RNA-dependent RNA polymerase into virus particles. Additionally, packaging of the genome was found to be necessary for the efficient release of particles, revealing a novel mechanism for the efficient generation of infectious virus. Our results identify possible conserved targets for development of anti-phlebovirus therapies
Nutrient intakes of rural Tibetan mothers: a cross-sectional survey
<p>Abstract</p> <p>Background</p> <p>Tibetan food intake is influenced by the region's high altitude and unique culture. Few published studies of nutrient intakes among Tibetan women are available. The present study of Tibetan mothers with young children explores dietary patterns, nutrient intakes, and differences between socio-demographic groups.</p> <p>Methods</p> <p>A cross-sectional survey of 386 women with a child aged less than 24 months was conducted in rural areas surrounding Lhasa, Tibet. All participants were recruited using simple random sampling and were interviewed face-to-face by trained investigators. Dietary information was collected via a food frequency questionnaire. Nutrient intakes were calculated using food composition tables. Non-parametric tests were used to compare nutrient intakes according to socio-demographic variables, and to compare results with the <it>2002 Chinese National Nutrition and Health Survey </it>(2002 NNHS) and dietary reference intakes (DRIs).</p> <p>Results</p> <p>Median intakes of energy (<it>p </it>< 0.001), protein (<it>p </it>< 0.001), fat (<it>p </it>< 0.001), vitamin A (<it>p </it>< 0.001), vitamin B1 (<it>p </it>< 0.001), vitamin B2 (<it>p </it>< 0.001), vitamin C (<it>p </it>< 0.001), and vitamin E (<it>p </it>< 0.001) were lower than the average levels reported in 2002 NNHS. The median intakes of calcium (517 mg/d, <it>p </it>< 0.001), iron (35 mg/d, <it>p </it>< 0.001), and zinc (17.3 mg/d, <it>p </it>< 0.001) were higher than the average levels in 2002 NNHS. The highest education subgroup had significantly higher intakes of vitamins A and C than the lowest education subgroup.</p> <p>Conclusion</p> <p>Although the diet of Tibetan mothers with young children has been partially influenced by other factors, their dietary patterns are still mostly composed of Tibetan traditional foods. Compared with the 2002 NNHS, Tibetan women with young children appear to have insufficient intakes of many nutrients, which will affect their nutritional status.</p
Allelic Gene Structure Variations in Anopheles gambiae Mosquitoes
Allelic gene structure variations and alternative splicing are responsible for transcript structure variations. More than 75% of human genes have structural isoforms of transcripts, but to date few studies have been conducted to verify the alternative splicing systematically.The present study used expressed sequence tags (ESTs) and EST tagged SNP patterns to examine the transcript structure variations resulting from allelic gene structure variations in the major human malaria vector, Anopheles gambiae. About 80% of 236,004 available A. gambiae ESTs were successfully aligned to A. gambiae reference genomes. More than 2,340 transcript structure variation events were detected. Because the current A. gambiae annotation is incomplete, we re-annotated the A. gambiae genome with an A. gambiae-specific gene model so that the effect of variations on gene coding could be better evaluated. A total of 15,962 genes were predicted. Among them, 3,873 were novel genes and 12,089 were previously identified genes. The gene completion rate improved from 60% to 84%. Based on EST support, 82.5% of gene structures were predicted correctly. In light of the new annotation, we found that approximately 78% of transcript structure variations were located within the coding sequence (CDS) regions, and >65% of variations in the CDS regions have the same open-reading-frame. The association between transcript structure isoforms and SNPs indicated that more than 28% of transcript structure variation events were contributed by different gene alleles in A. gambiae.We successfully expanded the A. gambiae genome annotation. We predicted and analyzed transcript structure variations in A. gambiae and found that allelic gene structure variation plays a major role in transcript diversity in this important human malaria vector
Ontogenetic De Novo Copy Number Variations (CNVs) as a Source of Genetic Individuality: Studies on Two Families with MZD Twins for Schizophrenia
Genetic individuality is the foundation of personalized medicine, yet its determinants are currently poorly understood. One issue is the difference between monozygotic twins that are assumed identical and have been extensively used in genetic studies for decades [1]. Here, we report genome-wide alterations in two nuclear families each with a pair of monozygotic twins discordant for schizophrenia evaluated by the Affymetrix 6.0 human SNP array. The data analysis includes characterization of copy number variations (CNVs) and single nucleotide polymorphism (SNPs). The results have identified genomic differences between twin pairs and a set of new provisional schizophrenia genes. Samples were found to have between 35 and 65 CNVs per individual. The majority of CNVs (∼80%) represented gains. In addition, ∼10% of the CNVs were de novo (not present in parents), of these, 30% arose during parental meiosis and 70% arose during developmental mitosis. We also observed SNPs in the twins that were absent from both parents. These constituted 0.12% of all SNPs seen in the twins. In 65% of cases these SNPs arose during meiosis compared to 35% during mitosis. The developmental mitotic origin of most CNVs that may lead to MZ twin discordance may also cause tissue differences within individuals during a single pregnancy and generate a high frequency of mosaics in the population. The results argue for enduring genome-wide changes during cellular transmission, often ignored in most genetic analyses
A Genetic and Structural Study of Genome Rearrangements Mediated by High Copy Repeat Ty1 Elements
Ty elements are high copy number, dispersed repeated sequences in the Saccharomyces cerevisiae genome known to mediate gross chromosomal rearrangements (GCRs). Here we found that introduction of Ty912, a previously identified Ty1 element, onto the non-essential terminal region of the left arm of chromosome V led to a 380-fold increase in the rate of accumulating GCRs in a wild-type strain. A survey of 48 different mutations identified those that either increased or decreased the rate of Ty-mediated GCRs and demonstrated that suppression of Ty-mediated GCRs differs from that of both low copy repeat sequence- and single copy sequence-mediated GCRs. The majority of the Ty912-mediated GCRs observed were monocentric nonreciprocal translocations mediated by RAD52-dependent homologous recombination (HR) between Ty912 and a Ty element on another chromosome arm. The remaining Ty912-mediated GCRs appeared to involve Ty912-mediated formation of unstable dicentric translocation chromosomes that were resolved by one or more Ty-mediated breakage-fusion-bridge cycles. Overall, the results demonstrate that the Ty912-mediated GCR assay is an excellent model for understanding mechanisms and pathways that suppress genome rearrangements mediated by high copy number repeat sequences, as well as the mechanisms by which such rearrangements occur
- …