28 research outputs found

    The Unconference Research Initiative

    Get PDF
    This group responded to the challenge in part with a conceptual piece of creative writing–a “conference snapshot” written by the Unconference Research Initiative (URI). The initiative is a transdisciplinary group of scholars who build conference infrastructure to support conference content. Robots? Check. Karaoke? Check

    The effect of stress on the expression of the amyloid precursor protein in rat brain

    Get PDF
    AbstractThe abnormal processing of the amyloid precursor protein (APP) is a pivotal event in the development of the unique pathology that defines Alzheimer's disease (AD). Stress, and the associated increase in corticosteroids, appear to accelerate brain ageing and may increase vulnerability to Alzheimer's disease via altered APP processing. In this study, rats were repeatedly exposed to an unavoidable stressor, an open elevated platform. Previous studies in this laboratory have shown that a single exposure produces a marked increase in plasma corticosterone levels but animals develop tolerance to this effect between 10 and 20 daily sessions. Twenty-four hours after stress, there was an increase in the ratio of the deglycosylated form of APP in the particulate fraction of the brain, which subsequently habituated after 20 days. The levels of soluble APP (APPs) tended to be lower in the stress groups compared to controls except for a significant increase in the hippocampus after 20 days of platform exposure. Since APPs is reported to have neurotrophic properties, this increased release may represent a neuroprotective response to repeated stress. It is possible that the ability to mount this response decreases with age thus increasing the vulnerability to stress-induced AD-related pathology

    Identification of Neonatal White Matter on DTI: Influence of More Inclusive Thresholds for Atlas Segmentation

    No full text
    <div><p>Purpose</p><p>Semi-automated diffusion tensor imaging (DTI) analysis of white matter (WM) microstructure offers a clinically feasible technique to assess neonatal brain development and provide early prognosis, but is limited by variable methods and insufficient evidence regarding optimal parameters. The purpose of this research was to investigate the influence of threshold values on semi-automated, atlas-based brain segmentation in very-low-birth-weight (VLBW) preterm infants at near-term age.</p><p>Materials and Methods</p><p>DTI scans were analyzed from 45 VLBW preterm neonates at near-term-age with no brain abnormalities evident on MRI. Brain regions were selected with a neonatal brain atlas and threshold values: trace <0.006 mm<sup>2</sup>/s, fractional anisotropy (FA)>0.15, FA>0.20, and FA>0.25. Relative regional volumes, FA, axial diffusivity (AD), and radial diffusivity (RD) were compared for twelve WM regions.</p><p>Results</p><p>Near-term brain regions demonstrated differential effects from segmentation with the three FA thresholds. Regional DTI values and volumes selected in the PLIC, CereP, and RLC varied the least with the application of different FA thresholds. Overall, application of higher FA thresholds significantly reduced brain region volume selected, increased variability, and resulted in higher FA and lower RD values. The lower threshold FA>0.15 selected 78±21% of original volumes segmented by the atlas, compared to 38±12% using threshold FA>0.25.</p><p>Conclusion</p><p>Results indicate substantial and differential effects of atlas-based DTI threshold parameters on regional volume and diffusion scalars. A lower, more inclusive FA threshold than typically applied for adults is suggested for consistent analysis of WM regions in neonates.</p></div

    The Unconference Research Initiative

    No full text
    This group responded to the challenge in part with a conceptual piece of creative writing–a “conference snapshot” written by the Unconference Research Initiative (URI). The initiative is a transdisciplinary group of scholars who build conference infrastructure to support conference content. Robots? Check. Karaoke? Check.</p

    Volume of WM regions selected with three FA thresholds, reported as a percent of total volume as defined by the neonatal atlas and trace threshold (mean±95% confidence intervals), in the left and right hemispheres, represented by adjacent left and right bars.

    No full text
    <p>Volume of WM regions selected with three FA thresholds, reported as a percent of total volume as defined by the neonatal atlas and trace threshold (mean±95% confidence intervals), in the left and right hemispheres, represented by adjacent left and right bars.</p

    Coefficients of variability (CV) of regional WM volumes for total volume as defined originally by the neonatal atlas and trace threshold, and for volumes defined by FA>0.15, FA>0.20, and FA>0.25 thresholds in the left and right hemispheres represented by adjacent left and right bars.

    No full text
    <p>Coefficients of variability (CV) of regional WM volumes for total volume as defined originally by the neonatal atlas and trace threshold, and for volumes defined by FA>0.15, FA>0.20, and FA>0.25 thresholds in the left and right hemispheres represented by adjacent left and right bars.</p
    corecore