6 research outputs found

    Acute skeletal muscle contractions orchestrate signaling mechanisms to trigger nuclear NFATc1 shuttling and epigenetic histone modifications

    No full text
    BACKGROUND/AIMS: Calcium (Ca²⁺) coordinates skeletal muscle functions by controlling contractions as well as signaling pathways and transcriptional properties. The ryanodine receptor 1 (RyR1), its phosphorylation site (pRyR1Ser²⁸⁴⁰) and its stabilizers navigate Ca²⁺ oscillations to command muscle signaling cascades and transcriptional activities. While chronic exercise increases pRyR1Ser²⁸⁴⁰, investigations on acute exercise's effects on RyR1 and Ca²⁺-dependent modifications of skeletal muscle are rare. The aim of this study was to examine molecular events leading to RyR1 phosphorylation in a physiological model of acute exercise. We hypothesized that exercise-induced RyR1 phosphorylation is associated with altered Ca²⁺-dependent physiological phenotypes. METHODS: We analyzed pRyR1Ser²⁸⁴⁰, its stabilizers, involved signaling pathways, and Ca²⁺-sensitive muscle-determining factors (i.e. NFATc1 and epigenetic histone H3 modifications) in rat muscles upon one single running bout of either concentric or eccentric contractions. RESULTS: Both acute exercises significantly increased pRyRSer²⁸⁴⁰ levels in muscles, which was accompanied by dissociations of stabilizers from RyR1. Additionally, RyR1 phosphorylation-inducing signaling cascades PTEN/CaMKII/ PKA were significantly activated upon exercise. Further, RyR1 phosphorylations were associated with increased Ca²⁺-dependent NFATc1 nuclear abundances as well as increased Ca²⁺-dependent epigenetic H3 acetylations pointing to a pRyR1Ser²⁸⁴⁰-dependent rapid and novel Ca²⁺ equilibrium upon exercise. CONCLUSION: Our data report synergistic actions of several distinct pathways to modify RyR1 function to govern physiological phenotypes, here expressed as increased nuclear NFATc1 abundances and epigenetic H3 modifications.status: accepte

    Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention

    No full text
    Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention

    Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention

    No full text
    Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention. Multi-ancestry meta-analyses of genome-wide association studies for self-reported physical activity during leisure time, leisure screen time, sedentary commuting and sedentary behavior at work identify 99 loci associated with at least one of these traits.N

    Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention.

    Get PDF
    Funder: Kjell och Märta Beijers StiftelseAlthough physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention
    corecore