122 research outputs found
Plasmons in Sodium under Pressure: Increasing Departure from Nearly-Free-Electron Behavior
We have measured plasmon energies in Na under high pressure up to 43 GPa
using inelastic x-ray scattering (IXS). The momentum-resolved results show
clear deviations, growing with increasing pressure, from the predictions for a
nearly-free electron metal. Plasmon energy calculations based on
first-principles electronic band structures and a quasi-classical plasmon model
allow us to identify a pressure-induced increase in the electron-ion
interaction and associated changes in the electronic band structure as the
origin of these deviations, rather than effects of exchange and correlation.
Additional IXS results obtained for K and Rb are addressed briefly.Comment: 5 pages, 4 figure
Design and Modeling of Micromechanical GaAs based Hot Plate for Gas Sensors
For modern Gas sensors, high sensitivity and low power are expected. This
paper discusses design, simulation and fabrication of new Micromachined Thermal
Converters (MTCs) based on GaAs developed for Gas sensors. Metal oxide gas
sensors generally work in high temperature mode that is required for chemical
reactions to be performed between molecules of the specified gas and the
surface of sensing material. There is a low power consumption required to
obtain the operation temperatures in the range of 200 to 500 oC. High thermal
isolation of these devices solves consumption problem and can be made by
designing of free standing micromechanical hot plates. Mechanical stability and
a fast thermal response are especially significant parameters that can not be
neglected. These characteristics can be achieved with new concept of GaAs
thermal converter.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
WASP-14 b: Transit Timing analysis of 19 light curves
Although WASP-14 b is one of the most massive and densest exoplanets on a
tight and eccentric orbit, it has never been a target of photometric follow-up
monitoring or dedicated observing campaigns. We report on new photometric
transit observations of WASP-14 b obtained within the framework of "Transit
Timing Variations @ Young Exoplanet Transit Initiative" (TTV@YETI). We
collected 19 light-curves of 13 individual transit events using six telescopes
located in five observatories distributed in Europe and Asia. From light curve
modelling, we determined the planetary, stellar, and geometrical properties of
the system and found them in agreement with the values from the discovery
paper. A test of the robustness of the transit times revealed that in case of a
non-reproducible transit shape the uncertainties may be underestimated even
with a wavelet-based error estimation methods. For the timing analysis we
included two publicly available transit times from 2007 and 2009. The long
observation period of seven years (2007-2013) allowed us to refine the transit
ephemeris. We derived an orbital period 1.2 s longer and 10 times more precise
than the one given in the discovery paper. We found no significant periodic
signal in the timing-residuals and, hence, no evidence for TTV in the system.Comment: 12 pages, 10 figures, 7 table
Multi-site campaign for transit timing variations of WASP-12 b: possible detection of a long-period signal of planetary origin
The transiting planet WASP-12 b was identified as a potential target for
transit timing studies because a departure from a linear ephemeris was reported
in the literature. Such deviations could be caused by an additional planet in
the system. We attempt to confirm the existence of claimed variations in
transit timing and interpret its origin. We organised a multi-site campaign to
observe transits by WASP-12 b in three observing seasons, using 0.5-2.6-metre
telescopes. We obtained 61 transit light curves, many of them with
sub-millimagnitude precision. The simultaneous analysis of the best-quality
datasets allowed us to obtain refined system parameters, which agree with
values reported in previous studies. The residuals versus a linear ephemeris
reveal a possible periodic signal that may be approximated by a sinusoid with
an amplitude of 0.00068+/-0.00013 d and period of 500+/-20 orbital periods of
WASP-12 b. The joint analysis of timing data and published radial velocity
measurements results in a two-planet model which better explains observations
than single-planet scenarios. We hypothesize that WASP-12 b might be not the
only planet in the system and there might be the additional 0.1 M_Jup body on a
3.6-d eccentric orbit. A dynamical analysis indicates that the proposed
two-planet system is stable over long timescales.Comment: Accepted for publication in A&
Recommended from our members
Electronic Spin Crossover of Iron in Ferroperclase in Earth?s Lower Mantle
Pressure-induced electronic spin-pairing transitions of iron and associated effects on the physical properties have been reported to occur in the lower-mantle ferropericlase, silicate perosvkite, and perhaps in post silicate perovskite at high pressures and room temperature. These recent results are motivating geophysicists and geodynamicists to reevaluate the implications of spin transitions on the seismic heterogeneity, composition, as well as the stability of the thermal upwellings of the Earth's lower mantle. Here we have measured the spin states of iron in ferropericlase and its crystal structure up to 95 GPa and 2000 K using a newly constructed X-ray emission spectroscopy and diffraction with the laser-heated diamond cell. Our results show that an isosymmetric spin crossover occurs over a pressure-temperature range extending from the upper part to the lower part of the lower mantle, and low-spin ferropericlase likely exists in the lowermost mantle. Although continuous changes in physical and chemical properties are expected to occur across the spin crossover, the spin crossover results in peculiar behavior in the thermal compression and sound velocities. Therefore, knowledge of the fraction of the spin states in the lower-mantle phases is thus essential to correctly evaluate the composition, geophysics, and dynamics of the Earth's lower mantle
- …