193 research outputs found

    On the Transition From Non-BLEVE to BLEVE Failure for a 1.8 M 3 Propane Tank

    Get PDF
    A series of fire tests were conducted on nine, 1.8 m 3 ͑500 US gal͒ ASME code propane pressure vessels to study th

    Molecular impact of launch related dynamic vibrations and static hypergravity in planarians

    Get PDF
    Although many examples of simulated and real microgravity demonstrating their profound effect on biological systems are described in literature, few reports deal with hypergravity and vibration effects, the levels of which are severely increased during the launch preceding the desired microgravity period. Here, we used planarians, flatworms that can regenerate any body part in a few days. Planarians are an ideal model to study the impact of launch-related hypergravity and vibration during a regenerative process in a “whole animal” context. Therefore, planarians were subjected to 8.5 minutes of 4 g hypergravity (i.e. a human-rated launch level) in the Large Diameter Centrifuge (LDC) and/or to vibrations (20–2000 Hz, 11.3 Grms) simulating the conditions of a standard rocket launch. The transcriptional levels of genes (erg-1, runt-1, fos, jnk, and yki) related with the early stress response were quantified through qPCR. The results show that early response genes are severely deregulated after static and dynamic loads but more so after a combined exposure of dynamic (vibration) and static (hypergravity) loads, more closely simulating real launch exposure profiles. Importantly, at least four days after the exposure, the transcriptional levels of those genes are still deregulated. Our results highlight the deep impact that short exposures to hypergravity and vibration have in organisms, and thus the implications that space flight launch could have. These phenomena should be taken into account when planning for well-controlled microgravity studies

    Alzheimer's early detection in post-acute COVID-19 syndrome: a systematic review and expert consensus on preclinical assessments.

    Get PDF
    The risk of developing Alzheimer's disease (AD) in older adults increasingly is being discussed in the literature on Post-Acute COVID-19 Syndrome (PACS). Remote digital Assessments for Preclinical AD (RAPAs) are becoming more important in screening for early AD, and should always be available for PACS patients, especially for patients at risk of AD. This systematic review examines the potential for using RAPA to identify impairments in PACS patients, scrutinizes the supporting evidence, and describes the recommendations of experts regarding their use. We conducted a thorough search using the PubMed and Embase databases. Systematic reviews (with or without meta-analysis), narrative reviews, and observational studies that assessed patients with PACS on specific RAPAs were included. The RAPAs that were identified looked for impairments in olfactory, eye-tracking, graphical, speech and language, central auditory, or spatial navigation abilities. The recommendations' final grades were determined by evaluating the strength of the evidence and by having a consensus discussion about the results of the Delphi rounds among an international Delphi consensus panel called IMPACT, sponsored by the French National Research Agency. The consensus panel included 11 international experts from France, Switzerland, and Canada. Based on the available evidence, olfaction is the most long-lasting impairment found in PACS patients. However, while olfaction is the most prevalent impairment, expert consensus statements recommend that AD olfactory screening should not be used on patients with a history of PACS at this point in time. Experts recommend that olfactory screenings can only be recommended once those under study have reported full recovery. This is particularly important for the deployment of the olfactory identification subdimension. The expert assessment that more long-term studies are needed after a period of full recovery, suggests that this consensus statement requires an update in a few years. Based on available evidence, olfaction could be long-lasting in PACS patients. However, according to expert consensus statements, AD olfactory screening is not recommended for patients with a history of PACS until complete recovery has been confirmed in the literature, particularly for the identification sub-dimension. This consensus statement may require an update in a few years

    Critical point network for drainage between rough surfaces

    Get PDF
    In this paper, we present a network method for computing two-phase flows between two rough surfaces with significant contact areas. Low-capillary number drainage is investigated here since one-phase flows have been previously investigated in other contributions. An invasion percolation algorithm is presented for modeling slow displacement of a wetting fluid by a non wetting one between two rough surfaces. Short-correlated Gaussian process is used to model random rough surfaces.The algorithm is based on a network description of the fracture aperture field. The network is constructed from the identification of critical points (saddles and maxima) of the aperture field. The invasion potential is determined from examining drainage process in a flat mini-channel. A direct comparison between numerical prediction and experimental visualizations on an identical geometry has been performed for one realization of an artificial fracture with a moderate fractional contact area of about 0.3. A good agreement is found between predictions and observations

    Genetic complexity of diagnostically unresolved Ehlers-Danlos syndrome

    Get PDF
    Background: The Ehlers-Danlos syndromes (EDS) are heritable disorders of connective tissue (HDCT), reclassified in the 2017 nosology into 13 subtypes. The genetic basis for hypermobile Ehlers-Danlos syndrome (hEDS) remains unknown. Methods: Whole exome sequencing (WES) was undertaken on 174 EDS patients recruited from a national diagnostic service for complex EDS and a specialist clinic for hEDS. Patients had already undergone expert phenotyping, laboratory investigation and gene sequencing, but were without a genetic diagnosis. Filtered WES data were reviewed for genes underlying Mendelian disorders and loci reported in EDS linkage, transcriptome and genome-wide association studies (GWAS). A genetic burden analysis (Minor Allele Frequency (MAF) <0.05) incorporating 248 Avon Longitudinal Study of Parents and Children (ALSPAC) controls sequenced as part of the UK10K study was undertaken using TASER methodology. Results: Heterozygous pathogenic (P) or likely pathogenic (LP) variants were identified in known EDS and Loeys-Dietz (LDS) genes. Multiple variants of uncertain significance where segregation and functional analysis may enable reclassification were found in genes associated with EDS, LDS, heritable thoracic aortic disease (HTAD), Mendelian disorders with EDS symptomatology and syndromes with EDS-like features. Genetic burden analysis revealed a number of novel loci, although none reached the threshold for genome-wide significance. Variants with biological plausibility were found in genes and pathways not currently associated with EDS or HTAD. Conclusions: We demonstrate the clinical utility of large panel-based sequencing and WES for patients with complex EDS in distinguishing rare EDS subtypes, LDS and related syndromes. Although many of the P and LP variants reported in this cohort would be identified with current panel testing, they were not at the time of this study, highlighting the use of extended panels and WES as a clinical tool for complex EDS. Our results are consistent with the complex genetic architecture of EDS and suggest a number of novel hEDS and HTAD candidate genes and pathways

    Cohort profile: the Utrecht Cardiovascular Cohort-Second Manifestations of Arterial Disease (UCC-SMART) Study-an ongoing prospective cohort study of patients at high cardiovascular risk in the Netherlands

    Get PDF
    PURPOSE: The Utrecht Cardiovascular Cohort-Second Manifestations of Arterial Disease (UCC-SMART) Study is an ongoing prospective single-centre cohort study with the aim to assess important determinants and the prognosis of cardiovascular disease progression. This article provides an update of the rationale, design, included patients, measurements and findings from the start in 1996 to date. PARTICIPANTS: The UCC-SMART Study includes patients aged 18-90 years referred to the University Medical Center Utrecht, the Netherlands, for management of cardiovascular disease (CVD) or severe cardiovascular risk factors. Since September 1996, a total of 14 830 patients have been included. Upon inclusion, patients undergo a standardised screening programme, including questionnaires, vital signs, laboratory measurements, an ECG, vascular ultrasound of carotid arteries and aorta, ankle-brachial index and ultrasound measurements of adipose tissue, kidney size and intima-media thickness. Outcomes of interest are collected through annual questionnaires and adjudicated by an endpoint committee. FINDINGS TO DATE: By May 2022, the included patients contributed to a total follow-up time of over 134 000 person-years. During follow-up, 2259 patients suffered a vascular endpoint (including non-fatal myocardial infarction, non-fatal stroke and vascular death) and 2794 all-cause deaths, 943 incident cases of diabetes and 2139 incident cases of cancer were observed up until January 2020. The UCC-SMART cohort contributed to over 350 articles published in peer-reviewed journals, including prediction models recommended by the 2021 European Society of Cardiology CVD prevention guidelines. FUTURE PLANS: The UCC-SMART Study guarantees an infrastructure for research in patients at high cardiovascular risk. The cohort will continue to include about 600 patients yearly and follow-up will be ongoing to ensure an up-to-date cohort in accordance with current healthcare and scientific knowledge. In the near future, UCC-SMART will be enriched by echocardiography, and a food frequency questionnaire at baseline enabling the assessment of associations between nutrition and CVD and diabetes

    Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies

    Get PDF
    Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype

    A cohort of 17 patients with kyphoscoliotic Ehlers-Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history.

    Get PDF
    PurposeIn 2012 we reported in six individuals a clinical condition almost indistinguishable from PLOD1-kyphoscoliotic Ehlers-Danlos syndrome (PLOD1-kEDS), caused by biallelic mutations in FKBP14, and characterized by progressive kyphoscoliosis, myopathy, and hearing loss in addition to connective tissue abnormalities such as joint hypermobility and hyperelastic skin. FKBP14 is an ER-resident protein belonging to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases); it catalyzes the folding of type III collagen and interacts with type III, type VI, and type X collagens. Only nine affected individuals have been reported to date.MethodsWe report on a cohort of 17 individuals with FKBP14-kEDS and the follow-up of three previously reported patients, and provide an extensive overview of the disorder and its natural history based on clinical, biochemical, and molecular genetics data.ResultsBased on the frequency of the clinical features of 23 patients from the present and previous cohorts, we define major and minor features of FKBP14-kEDS. We show that myopathy is confirmed by histology and muscle imaging only in some patients, and that hearing impairment is predominantly sensorineural and may not be present in all individuals.ConclusionOur data further support the extensive clinical overlap with PLOD1-kEDS and show that vascular complications are rare manifestations of FKBP14-kEDS
    corecore