384 research outputs found
Scientific Stories, Frame by Frame: Using Sequential Art for Science Education
After years of disseminating his research findings by standard means (professional conferences, public outreach workshops, etc), Georgia Southern Geographer Dr. John Van Stan began to look for more efficient ways to connect his work to public interest. This link was found in sequential art.
Zach S. Henderson is pleased to host Dr. Van Stan as he highlights the collaborative effort between a Forest Scientist and a Graphic Illustrator. Details of the step by step process, difficulties, rewards, and lessons learned will be brought to life with beautiful graphics.
This program is for anyone with an interest in art, science, story-telling, comics, graphic novels, teaching with graphics, and collaboration across disciplines. Zach S. Henderson Library will provide light snacks and attendance verification to all participants, and also hold a drawing for copies of Van Stan’s printed Graphic Novel
Three Fundamental Challenges to the Advancement of Stemflow Research and Its Integration into Natural Science
Plant canopies divert a portion of precipitation to the base of their stems through stemflow , a phenomenon that influences the canopy water balance, soil microbial ecology, and intrasystem nutrient cycling. However, a comprehensive integration of stemflow into theoretical and numerical models in natural science remains limited. This perspective examines three unresolved, fundamental questions hindering this integration, spanning the canopy to the soil. First, the precise source area within the canopy that generates stemflow is undefined. Thus, we asked, whence stemflow? Current common assumptions equate it to the entire tree canopy, a potentially misleading simplification that could affect our interpretation of stemflow variability. Second, we asked what are the various conditions contributing to stemflow generation-beyond rain, to dew and intercepted ice melt-and could the exclusion of these volumes consequently obscure an understanding of the broader implications of stemflow? Third, we explored whither stemflow? This question extends beyond how much stemflow infiltrates where, into what uptakes it and from where. Addressing these questions is constrained by current observational and analytical methods. Nevertheless, by confronting these challenges, the stemflow research community stands to make significant strides in comprehending this unique hydrological component and situating it within the broader context of natural science
Molecular and Optical Properties of Tree-derived Dissolved Organic Matter in Throughfall and Stemflow From Live Oaks and Eastern Red Cedar
Studies of dissolved organic matter (DOM) transport through terrestrial aquatic systems usually start at the stream. However, the interception of rainwater by vegetation marks the beginning of the terrestrial hydrological cycle making trees the headwaters of aquatic carbon cycling. Rainwater interacts with trees picking up tree-DOM, which is then exported from the tree in stemflow and throughfall. Stemflow denotes water flowing down the tree trunk, while throughfall is the water that drips through the leaves of the canopy. We report the concentrations, optical properties (light absorbance) and molecular signatures (ultrahigh resolution mass spectrometry) of tree-DOM in throughfall and stemflow from two tree species (live oak and eastern red cedar) with varying epiphyte cover on Skidaway Island, Savannah, Georgia, USA. Both stemflow and throughfall were enriched in DOM compared to rainwater, indicating trees were a significant source of DOM. The optical and molecular properties of tree-DOM were broadly consistent with those of DOM in other aquatic ecosystems. Stemflow was enriched in highly colored DOM compared to throughfall. Elemental formulas identified clustered the samples into three groups: oak stemflow, oak throughfall and cedar. The molecular properties of each cluster are consistent with an autochthonous aromatic-rich source associated with the trees, their epiphytes and the microhabitats they support. Elemental formulas enriched in oak stemflow were more diverse, enriched in aromatic formulas, and of higher molecular mass than for other tree-DOM classes, suggesting greater contributions from fresh and partially modified plant-derived organics. Oak throughfall was enriched in lower molecular weight, aliphatic and sugar formulas, suggesting greater contributions from foliar surfaces. While the optical properties and the majority of the elemental formulas within tree-DOM were consistent with vascular plant-derived organics, condensed aromatic formulas were also identified. As condensed aromatics are generally interpreted as deriving from partially combusted organics, some of the tree-DOM may have derived from the atmospheric deposition of thermogenic and other windblown organics. These initial findings should prove useful as future studies seek to track tree-DOM across the aquatic gradient from canopy roof, through soils and into fluvial networks
Hypothesis and theory: Do trees “release the tension” in rainwater? Surface tension reduction in throughfall and stemflow from urban trees
Knowledge of the processes and impacts associated with the canopy’s partitioning of rainfall into stemflow (water that drains to the base of tree stems) and throughfall (water that drips through gaps and from canopy surfaces) has expanded in recent years. However, the effect of canopy interactions on the fundamental physical properties of rainwater as it travels through the canopy to the soil, particularly surface tension, remains understudied. To discuss specific hypotheses within this context and their relevance to ecohydrological theory, the surface tension of rainwater samples was examined directly. Over a period of 9 months, open rainwater, throughfall and stemflow samples were collected during 20 storms from 12 study trees located in Secrest Arboretum (about 2.5 km outside Wooster, Ohio). Study trees were selected to highlight a range of canopy characteristics, with each tree being from a unique deciduous species. Surface tension was measured using pendant drop goniometry, and measurements were analyzed for variation across study trees and correlation with event air temperature and rain intensity. In general, surface tension was reduced in throughfall and stemflow compared to measurements made for event rainwater, with median surface tension changes of −0.446 mN m−1 and −0.595 mN m−1 for throughfall and stemflow, respectively. The extent of this reduction varied among study trees (with changes as great as −6.5 to −5.5 mN m−1), and storm event characteristics were directly and indirectly correlated with surface tension changes in select cases. Hypothetically, a number of mechanisms may account for the observed reduction (and variation in this reduction) in surface tension, including differences in tree surface properties, canopy microenvironments, and microbiomes, and each warrant further research. Testing these hypotheses may advance broader ecohydrological theory as surface tension changes will influence wetting, absorption, and solute exchange processes within the canopy which, in turn, may affect related surface processes
Throughfall Nutrients in a Degraded Indigenous Fagus Orientalis Forest and a Picea Abies Plantation in the of North of Iran
Aim of study: The objective of this study was to compare the quantity and quality of TF (throughfall) in an indigenous, but degraded, stand of Fagus orientalis and Picea abies plantation.
Area of study: Forests of Kelar-Dasht region located in Mazandaran province, northern Iran.
Material and Methods: TF measured by twenty collectors that were distributed randomly underneath each stand. For 21 storms sampled in 2012 (August-December) and 2013 (April-June), we analyzed pH, EC, Ca2+, Mg2+, K+, NO3-, and P of gross rainfall (GR) and TF.
Main results: Cumulative interception (I) for F. orientalis and P. abies were 114.2 mm and 194.8 mm of the total GR, respectively. The amount of K+ (13.4 mg L-1) and Ca2+ (0.9 mg L-1) were higher (for both elements, p = 0.001) in the TF of P. abies compared to those of F. orientalis (6.8 and 0.5, mg L-1, respectively) and GR (3.2 and 0.37 mg L-1, respectively). Conversely, mean P concentration was doubled (p = 0.022) in the TF of F. orientalis (11.1 mg L-1) compared to GR (5.8 mg L-1).
Research highlights: P. abies plantations may provide a solution for reforestation of degraded F. orientalis forests of northern Iran, yet how P. abies plantations differentially affect the quality and quantity of rainfall reaching subcanopy soils (TF) compared to F. orientalis is unknown. Understanding the connection between hydrological processes and nutrient cycling in forest ecosystems is crucial for choosing the appropriate species to rehabilitate the degraded indigenous forests with nonindigenous species
Rainfall interception and redistribution by a common North American understory and pasture forb, \u3cem\u3eEupatorium capillifolium\u3c/em\u3e (Lam. dogfennel)
In vegetated landscapes, rain must pass through plant canopies and litter to enter soils. As a result, some rainwater is returned to the atmosphere (i.e., interception, I) and the remainder is partitioned into a canopy (and gap) drip flux (i.e., throughfall) or drained down the stem (i.e., stemflow). Current theoretical and numerical modeling frameworks for this process are almost exclusively based on data from woody overstory plants. However, herbaceous plants often populate the understory and are the primary cover for important ecosystems (e.g., grasslands and croplands). This study investigates how overstory throughfall (PT,o) is partitioned into understory I, throughfall (PT) and stemflow (PS) by a dominant forb in disturbed urban forests (as well as grasslands and pasturelands), Eupatorium capillifolium (Lam., dogfennel). Dogfennel density at the site was 56 770 stems ha−1, enabling water storage capacities for leaves and stems of 0.90±0.04 and 0.43±0.02 mm, respectively. As direct measurement of PT,o (using methods such as tipping buckets or bottles) would remove PT,o or disturb the understory partitioning of PT,o, overstory throughfall was modeled (PT,o′ role= presentation \u3eP′T,o) using on-site observations of PT,o from a previous field campaign. Relying on modeled PT,o′ role= presentation \u3eP′T,o, rather than on observations of PT,o directly above individual plants means that significant uncertainty remains with respect to (i) small-scale relative values of PT and PS and (ii) factors driving PS variability among individual dogfennel plants. Indeed, PS data from individual plants were highly skewed, where the mean PS:PT,o′ role= presentation \u3ePS:P′T,o per plant was 36.8 %, but the median was 7.6 % (2.8 %–27.2 % interquartile range) and the total over the study period was 7.9 %. PS variability (n=30 plants) was high (CV \u3e 200 %) and may hypothetically be explained by fine-scale spatiotemporal patterns in actual overstory throughfall (as no plant structural factors explained the variability). The total PT:PT,o′ role= presentation \u3ePT:P′T,o was 71 % (median PT:PT,o′ role= presentation \u3ePT:P′T,o per gauge was 72 %, with a 59 %–91 % interquartile range). Occult precipitation (mixed dew and light rain events) occurred during the study period, revealing that dogfennel can capture and drain dew to their stem base as PS. Dew-induced PS may help explain dogfennel\u27s improved invasion efficacy during droughts (as it tends to be one of the most problematic weeds in the improved grazing systems in the southeastern US). Overall, dogfennel\u27s precipitation partitioning differed markedly from the site\u27s overstory trees (Pinus palustris), and a discussion of the limited literature suggests that these differences may exist across vegetated ecosystems. Thus, more research on herbaceous plant canopy interactions with precipitation is merited
Shower Thoughts: Why Scientists Should Spend More Time in the Rain
Stormwater is a vital resource and dynamic driver of terrestrial ecosystem processes. However, processes controlling interactions during and shortly after storms are often poorly seen and poorly sensed when direct observations are substituted with technological ones. We discuss how human observations complement technological ones and the benefits of scientists spending more time in the storm. Human observation can reveal ephemeral storm-related phenomena such as biogeochemical hot moments, organismal responses, and sedimentary processes that can then be explored in greater resolution using sensors and virtual experiments. Storm-related phenomena trigger lasting, oversized impacts on hydrologic and biogeochemical processes, organismal traits or functions, and ecosystem services at all scales. We provide examples of phenomena in forests, across disciplines and scales, that have been overlooked in past research to inspire mindful, holistic observation of ecosystems during storms. We conclude that technological observations alone are insufficient to trace the process complexity and unpredictability of fleeting biogeochemical or ecological events without the shower thoughts produced by scientists\u27 human sensory and cognitive systems during storms
Structural basis for CRISPR RNA-guided DNA recognition by Cascade
The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5′-hydroxyl and 2′,3′-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.
Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S,5S)-hexanediol at moderate temperatures
There is considerable interest in the use of enantioselective alcohol dehydrogenases for the production of enantio- and diastereomerically pure diols, which are important building blocks for pharmaceuticals, agrochemicals and fine chemicals. Due to the need for a stable alcohol dehydrogenase with activity at low-temperature process conditions (30°C) for the production of (2S,5S)-hexanediol, we have improved an alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus (AdhA). A stable S-selective alcohol dehydrogenase with increased activity at 30°C on the substrate 2,5-hexanedione was generated by laboratory evolution on the thermostable alcohol dehydrogenase AdhA. One round of error-prone PCR and screening of ∼1,500 mutants was performed. The maximum specific activity of the best performing mutant with 2,5-hexanedione at 30°C was tenfold higher compared to the activity of the wild-type enzyme. A 3D-model of AdhA revealed that this mutant has one mutation in the well-conserved NADP(H)-binding site (R11L), and a second mutation (A180V) near the catalytic and highly conserved threonine at position 183
Archiving primary data: solutions for long-term studies
The recent trend for journals to require open access to primary data included in publications has been embraced by many biologists, but has caused apprehension amongst researchers engaged in long-term ecological and evolutionary studies. A worldwide survey of 73 principal investigators (Pls) with long-term studies revealed positive attitudes towards sharing data with the agreement or involvement of the PI, and 93% of PIs have historically shared data. Only 8% were in favor of uncontrolled, open access to primary data while 63% expressed serious concern. We present here their viewpoint on an issue that can have non-trivial scientific consequences. We discuss potential costs of public data archiving and provide possible solutions to meet the needs of journals and researchers
- …