16,473 research outputs found

    Radiative zone solar magnetic fields and g-modes

    Get PDF
    We consider a generalized model of seismic-wave propagation that takes into account the effect of a central magnetic field in the Sun. We determine the g-mode spectrum in the perturbative magnetic field limit using a one-dimensional Magneto-Hydrodynamics (MHD) picture. We show that central magnetic fields of about 600-800 kG can displace the pure g-mode frequencies by about 1%, as hinted by the helioseismic interpretation of GOLF observations.Comment: 6 pages, 4 figures; final version to appear in MNRA

    Non-Gaussian Geostatistical Modeling using (skew) t Processes

    Get PDF
    We propose a new model for regression and dependence analysis when addressing spatial data with possibly heavy tails and an asymmetric marginal distribution. We first propose a stationary process with tt marginals obtained through scale mixing of a Gaussian process with an inverse square root process with Gamma marginals. We then generalize this construction by considering a skew-Gaussian process, thus obtaining a process with skew-t marginal distributions. For the proposed (skew) tt process we study the second-order and geometrical properties and in the tt case, we provide analytic expressions for the bivariate distribution. In an extensive simulation study, we investigate the use of the weighted pairwise likelihood as a method of estimation for the tt process. Moreover we compare the performance of the optimal linear predictor of the tt process versus the optimal Gaussian predictor. Finally, the effectiveness of our methodology is illustrated by analyzing a georeferenced dataset on maximum temperatures in Australi

    Skewed Factor Models Using Selection Mechanisms

    Get PDF
    Traditional factor models explicitly or implicitly assume that the factors follow a multivariate normal distribution; that is, only moments up to order two are involved. However, it may happen in real data problems that the first two moments cannot explain the factors. Based on this motivation, here we devise three new skewed factor models, the skew-normal, the skew-t, and the generalized skew-normal factor models depending on a selection mechanism on the factors. The ECME algorithms are adopted to estimate related parameters for statistical inference. Monte Carlo simulations validate our new models and we demonstrate the need for skewed factor models using the classic open/closed book exam scores dataset
    corecore