705 research outputs found
n_TOF facility past and future
The neutron Time of Flight (n_TOF) facility at CERN is a source of high flux of neutrons obtained by the spallation process of 20 GeV/c protons onto a solid lead target and the remarkable beam intensity of the Proton Synchrotron (PS). From November 2008 the n_TOF facility resumed operation after a halt of 4 years due to radio-protection issues. It features a new lead spallation target with a more robust design, more efficient cooling, separate moderator circuit, target area ventilation and most important without any loss of the unique neutron performances of the previous target. Moreover the separate moderator circuit will permit in the future the use of borated or heavy water instead of normal water to reduce the 2.2 MeV gamma background for the neutron capture measurements. The facility has been commissioned in Nov 2008, with performances similar of the previous target and predicted by Monte Carlo simulations. The facility will resume operation for physics from May 2009 with 4 experimental proposals already approved by the Research board, on Astrophysics, Fission fragment distribution and fundamental physics with neutron-neutron scattering
Fluka Estimations concerning Obstacles in the LHC Magnets.
The effect of the impact of the full energy LHC proton beam with an object left in the beam pipe is investigated in order to assess the conditions for a superconducting magnet's quench. FLUKA simulations indicate that a quench would happen about 20 m downstream from the impact for a current through the object being several orders of magnitude lower than the nominal beam current. If such a strict current limit (decreasing with increasing obstacle's thickness) is not exceeded in operational conditions, the obstacle might be destroyed without causing any quench, being the vaporization time dependent on its shape and movement. However, any rise of the traversing current above the mentioned limit would result in a beam dump and the obstacle remaining in the machine
The Impact of Vacuum Gate Valves on the LHC Beam
The LHC vacuum sector valves are located in the straight sections of the LHC ring, and designed to sectorize the LHC vacuum. The valves are interlocked and should trigger a beam dump request if they close on a circulating beam. This report studies the impact on the machine if this request is not made and the valve scrapes the LHC beam halo. Cascade calculations are made using a model of IR7, with several different valve locations, to calculate the downstream energy deposition in superconducting magnet coils and the corresponding signal in beam loss monitors at the quench level. The calculations are done at 7, 5, and 3.5 TeV. It is found that when a downstream magnet reaches the quench level, the neighbouring BLMs see a signal well above the detection threshold. Furthermore, the BLM signal is consistent with the BLM applied threshold settings and a signal is seen in the time domain before the quench level is reached. Therefore the report concludes that the BLMs can see the closing valve and trigger a beam dump before the quench (or damage) level is reached
A CVD diamond detector for (n,alpha) cross section measurements
Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike LicenceIn astrophysics, the determination of the optical alpha-nucleus potential for low alpha-particle energies, crucial in understanding the origin of the stable isotopes, has turned out to be a challenge. Theory still cannot predict the optical potentials required for the calculation of the astrophysical reaction rates in the Hauser-Feshbach statistical model and there is scant experimental information on reactions with alpha particles at the relevant astrophysical energies. Measurements of (n,alpha) cross-sections offer a good opportunity to study the alpha channel. At the n_TOF experiment at CERN, a prototype detector, based on the chemical vapor deposition (CVD) diamond technology, has been recently developed for (n,alpha) measurements. A reference measurement of the 10B(n,alpha)7Li reaction was performed in 2011 at n_TOF as a feasibility study for this detector type. The results of this measurement and an outline for future experiments are presented here
FLUKA simulations for the optimization of the Beam Loss Monitors
The collimation system in the beam cleaning insertion IR7 of the Large Hadron Collider (LHC) is expected to clean the primary halo and the secondary radiation of a beam with unprecedented energy and intensity. Accidental beam losses can therefore entail severe consequences to the hardware of the machine. Thus, protection mechanisms, e.g. beam abort, must be instantaneously triggered by a set of Beam Loss Monitors (BLM's). The readings in the BLM's couple the losses from various collimators, thus rendering the identification of any faulty unit rather complex. In the present study the detailed geometry of IR7 is upgraded with the insertion of the BLM's, and the Monte Carlo FLUKA transport code is used to estimate the individual contribution of every collimator to the showers detected in each BLM
Energy Deposition Studies for Possible Innovative Phase II Collimator Designs
Due to the known limitations of Phase I LHC collimators in stable physics conditions, the LHC collimation system will be complemented by additional 30 Phase II collimators. The Phase II collimation system is designed to improve cleaning efficiency and to minimize the collimator-induced impedance with the main function of protecting the Super Conducting (SC) magnets from quenching due to beam particle losses. To fulfil these requirements, different possible innovative collimation designs were taken in consideration. Advanced jaw materials, including new composite materials (e.g. Cu–Diamond), jaw SiC insertions, coating foil, in-jaw instrumentation (e.g. BPM) and improved mechanical robustness of the jaw are the main features of these new promising Phase II collimator designs developed at CERN. The FLUKA Monte Carlo code is extensively used to evaluate the behavior of these collimators in the most radioactive areas of LHC, supporting the mechanical integration. These studies aim to identify the possible critical points along the IR7 line
Technical Description of the implementation of IR7 section at LHC with the FLUKA transport code.
This document contains the technical description of the LHC IR7 FLUKA implementation. It has been written as a handbook to analyze, understand or modify the heat deposition Monte Carlo calculations performed for a wide variety of objects in the IR7 section of the LHC accelerator, in construction at CERN. The work includes references to the prototyping schemes and the implementation of a complex set-up for FLUKA, which deals with lists of objects and properties defined in the Twiss parameters through the use of the LATTICE concept and of a broad collection of user written subroutines
Pulse processing routines for neutron time-of-flight data
A pulse shape analysis framework is described, which was developed for
n_TOF-Phase3, the third phase in the operation of the n_TOF facility at CERN.
The most notable feature of this new framework is the adoption of generic pulse
shape analysis routines, characterized by a minimal number of explicit
assumptions about the nature of pulses. The aim of these routines is to be
applicable to a wide variety of detectors, thus facilitating the introduction
of the new detectors or types of detectors into the analysis framework. The
operational details of the routines are suited to the specific requirements of
particular detectors by adjusting the set of external input parameters. Pulse
recognition, baseline calculation and the pulse shape fitting procedure are
described. Special emphasis is put on their computational efficiency, since the
most basic implementations of these conceptually simple methods are often
computationally inefficient.Comment: 13 pages, 10 figures, 5 table
Optimization of the active absorber scheme for the protection of the Dispersion Suppressor
There are two main types of cold elements in IR7: quadrupole and dipole magnets (MQ and MB). According to predictions, these objects are to lose their superconducting properties if the spurious power densities reach about 1 and 5 mW/cm3, respectively. In order to protect these fragile components, 5 active absorbers (TCLA) were designed and a systematic study was launched to maximize the shielding efficiency of the absorber system for different configurations (locations and orientations). The TCLA's are identical to the secondary collimators (TCS), the only difference is found in the material of the jaw, which, initially, was set integrally to Cu (instead of C) and later included a small W insertion. This report summarizes the survey of cold element protection through TCLA insertion optimization
- …